

SCHOOL OF AGRICULTURE SYLLABUS FOR THE ADMISSION TO DOCTORAL DEGREE PROGRAMMES

GENETICS & PLANT BREEDING

Unit 1: General Genetics and Plant Breeding

Mendelian inheritance. Cell structure and division, Linkage, its detection and estimation. Epistasis. Gene concept, allelism and fine structure of gene. Extra chromosomal inheritance. DNA – structure, function, replication and repair. Genetic code. Gene-enzyme relationship. Replication, Transcription and Translation. Gene regulation in prokaryotes and eukaryotes. Nuclear and cytoplasmic genome organization. Spontaneous and induced mutations and their molecular mechanisms. Crop domestication, evolution of crops and centres of diversity. Emergence of scientific plant breeding. Objectives and accomplishments in plant breeding and the role of National and International institutes. Gametogenesis and fertilization. Modes of sexual and asexual reproduction and its relation to plant breeding methodology. Apomixes, incompatibility and male sterility systems and their use in plant breeding. Epigenetics.

Unit 2: Economics Botany and Plant Breeding Methods

Origin, distribution, classification, description and botany of cereals (wheat, rice, maize, sorghum, pearl millet, small millets); pulses (pigeonpea, chickpea, black gram, green gram, cowpea, soybean, pea, lentil, horse gram, lab-lab, rice bean, lathyrus, lima bean; oilseeds (groundnut, sesamum, castor, rapeseed mustard, sunflower, safflower, niger, linseed); fibre and sugar crops, fodder and green manures; Breeding methods for self-pollinated, cross-pollinated and asexually propagated crops. Combination, recombination and transgressive breeding. Single seed descent. Populations, their improvement methods and maintenance, Hybrid breeding and genetic basis of heterosis. Ideotype breeding. Mutation breeding, Concept of tree breeding. Speed breeding methods, Pre-breeding, Reverse Breeding.

Unit 3: Genome Organization and Cytogenetics of Crop Plants

Chromosome number, structure, function and replication. Sex determination & sex linkage. Recombination and crossing over. Molecular and cytological mechanism of crossing over. Karyotype analysis.Chromosomal theory of inheritance. Cell cycle and its regulation. Banding techniques. *In situ* hybridization. GISH and FISH Special types of chromosomes. Chromosomal interchanges, inversions, duplications and deletions. Polyploids, haploids, aneuploids, their utility and their meiotic behaviour. Wide hybridization and chromosomal manipulations for alien gene transfer. Pre-and post- fertilization barriers in wide hybridization. Genome organization and Cytogenetics of important crop species- wheat, maize, rice, sorghum, *Brassica*, groundnut, cotton, *Vigna*, potato and sugarcane. Cytogenetic techniques for gene location and gene transfer, Construction and use of molecular marker based chromosome maps.

Unit 4: Quantitative and Biometrical Genetics

Quantitative characters. Multiple factors inheritance. Genetic control of polygenic characters. Genetic advance and types of selection their effects on population mean and variance. Metric characters under natural selection. Repeatability and asymmetry of response. Breeding value. Dominance and interaction deviations. Hardy Weinberg law and changes in gene frequency due to migration, mutation and selection. Linkage disequilibrium. Genetic load. Polymorphism. Breeding value, heritability. Response to selection, correlated response. Estimates of variance components and covariance among relatives. Mating designs with random and inbred parents. Estimation of gene effects and combining ability. Effects of linkage and epistasis on estimation of genetic parameters. Maternal effects. Genotype-environment interactions, stability of performance and stability analysis. Heterosis and its basis (Genetic, biochemical and physiological). Mating system and mating design- diallel, line X tester, NC-I NC-II and NC-III designs, approaches to estimate and exploit components of self and cross pollinated crops. . GGE biplot analysis, Principal component analysis, AMMI and GGI analysis.

Unit 5: Genetic Engineering and Biotechnological Tools in Plant Breeding

Somatic hybridization, micropropagation, somaclonal variation, *in vitro* mutagenesis. Anther culture. Cryopreservation. Genetic and molecular markers, generation of molecular markers and their application in genetic analyses and breeding. Molecular markers in genetic diversity analysis and breeding for complex characters. Gene tagging, QTL mapping, MAS, MARS and MABB. Vectors. DNA libraries, DNA fingerprinting, DNA sequencing. Nucleic acid hybridization and immunochemical detection. Chromosome walking, Recombinant DNA technology, Gene cloning strategies. Gene transfer methods. Artificial synthesis of gene. Genetic transformation, transgenics and cisgenics. Antisense RNA, RNAi and micro RNA techniques in crop improvement. Genome editing using CRISPER/cas, Genomic selection, RNA Seq analysis,

Unit 6: Plant Breeding for Stress Resistance and Nutritional Quality

Genetic and molecular basis and breeding for resistance to diseases and insect-pests. Breeding for vertical and horizontal resistance to diseases. Genetic and physiological basis of abiotic stress tolerance. Breeding for resistance to heat, frost, flood, drought and soil stresses. Important quality parameters in various crops, their genetic basis and breeding for these traits. Role of molecular markers in stress resistance breeding using biotechnological tools (MAS, MARS and MABB and transgenics). Biofortification.

Unit 7: Plant Genetic Resources and their Regulatory System; Varietal Release and Seed Production

Plant exploration, germplasm introduction, exchange, conservation, evaluation and utilization of plant genetic resources. Types of genetic resources. Centres of diversity of cultivated plants. Genetic erosion and genetic vulnerability. Convention on Biological Diversity and International Treaty on Plant Genetic Resources for Food and Agriculture. Intellectual Property Rights and its different forms for protection of plant genetic resources. Biodiversity Act. Protection of Plant

Varieties and Farmers' Rights Act and its features. System of variety release and notification. Types of seeds and seed chain. Maintenance breeding- nucleus and breeder seed production. Seed production and certification.

Unit 8: Statistical Methods and Field Plot Techniques

Frequency distribution. Measures of central tendency, probability theory and its applications in genetics. Probability distribution and tests of significance. Correlation, linear, partial and multiple regression. Genetic divergence. Multivariate analysis. Designs of experiments - basic principles, completely randomized design, randomized block design and split plot design. Complete and incomplete block designs. Augmented design, Grid and honeycomb design. Hill plots, unreplicated evaluation. Data collection and interpretation.

AGRICULTURAL ENTOMOLOGY/ENTOMOLOGY

Unit 1: Systematics

History and development of Entomology, Evolution of insects, position of insects in the animal kingdom, characteristics of phylum Arthropoda, structural features of important arthropod groups such as Trilobita, Chelicerata and Mandibulata, structural features of important classes of phylum Arthropoda viz. Arachnida, Crustacea, Chilopoda, Diplopoda and Hexapoda. Classification of insects up to order level, habits, habitats and distinguishing features of different Order and important Families.

Unit 2: Morphology

Body wall, its structure, outgrowths, endoskeleton, Body regions, segmentation, sclerites and sutures, Insect Colors. Head and head appendages, types of mouth parts, antennae, their structure and types. Thorax structure, thoracic appendages and their modification. Wings, their modification and venation, Abdomen; structure, abdominal appendages both in Pterygota and Apterygota. External genitalia, general structure and modification in important insect orders.

Unit 3: Embryology, Internal Anatomy and Physiology

Embryonic and post embryonic development, types of metamorphosis, physiology of ecdysis. General features and types of larvae and pupae. Structure, function, physiology and modifications of Digestive, Circulatory, Respiratory, Reproductive, Nervous, Excretory systems, Endocrine system and Sense Organs. Insect food and nutrition; minerals, carbohydrates, proteins and amino acids, lipids, vitamins and their role in growth and development, artificial diets.

Unit 4: Ecology

Concept of ecology, Environment and its components-biotic and abiotic factors and their effects on growth, development, diapause, population structure and dynamics, distribution and dispersal. Principles of biogeography and insects biodiversity. Assessment of diversity indices. Biotic potential and environmental resistance. Climate change and adaptations. Ecosystems, agroecosystem analyses, ecological niche, their characteristics and functioning. Intra and inter specific relationship; competition, predator-prey and host-parasitoid interactions. Food chain, food web and trophic relations. Life table studies, population models. Arthropod population monitoring, pest forecasting. Causes of pest out breaks.

Unit 5: Biological Control

Importance and scope of biological control, history of biological control: Biocontrol agentsparasitoids, predators, insect pathogens and weed killers. Important entomophagous insect Orders and Families. Ecological, biological, taxonomic, legal and economic aspects of biological control, phenomena of multiple parasitism, hyperparasitism, superparasitism and their applied importance. Principles and procedures of using exotic biocontrol agents. Utilization of natural biocontrol agents: conservation, habitat management and augmentation. Mass multiplication techniques and economics. Effective evaluation techniques, Biocontrol organizations in world and India. Successful cases of biological control of pests. Use of biotechnological tools in enhancing the potentials of Bio-Control Agents.

Unit 6: Chemical Control and Toxicology

History, scope and principles of chemical control. Insecticides, classification and mode of action -Conventional and IRAC. Formulations of insecticides. Penetration of insecticides. Physical, chemical and toxicological properties of different groups of insecticides. rodenticides, insect growth hormones. Insecticide induced resurgence. Combination insecticides. Pesticide hazards and environmental pollution. Safe use of pesticides, precautions, first aid treatments and antidotes. Insecticides Act 1968, Functions of CIB & RC, registration and quality control of insecticides. Evaluation of toxicity, methods of toxicity testing, determination of LD 50, LT 50, RL 50 etc. Pesticide residues in the environment and their dynamics of movements, methods of residue analysis. Good laboratory practices. Pharmacology of insect poisons. Metabolism of insecticides; detoxification enzymes and their role in metabolism. Selectivity of insecticides insecticide resistance; mechanism, genetics and management of insecticide resistance.

Unit 7: Host Plant Resistance

Principles of HPR. Basis of resistance (Antixenosis, Antibiosis, Tolerance). Host plant selection by phytophagous insects. Biophysical and biochemical bases of defense against phytophagous insects. Genetics of Resistance: vertical resistance, horizontal resistance, oligogenic resistance, polygenic resistance. Biotype development and break down of resistance. Tritrophic interactions, induced resistance. Breeding for insect resistant crops and evaluation techniques. Biotechnological approaches and development of transgenic insect resistant plants, its advantages and limitations. Case histories. Insect resistance to transgenic plants and its management.

Unit 8: Novel Approaches in Pest Control

Behavioural control: semiochemicals pheromones-types and uses, advantages and limitations. Hormonal control: types and function of insect hormones, insect hormone mimics, advantages and limitations. chemosterilants, antifeedants, attractants, repellents; their types, method of applications, advantages and limitations. Genetic control: concepts and methods, case histories, advantages and limitations. Genetic improvement and genetic engineering of bio control agents. Pest management in organic agriculture. Pest management in precision agriculture.

Unit 9: Integrated Pest Management

History, concept and principles of IPM. Components of IPM: Host plant resistance, cultural, mechanical, physical, chemical, biological, genetic and behavioural control etc. System approach, Agro ecosystem and cropping system vs. IPM. Concept of damage levels- Economic threshold levels (ETL), Economic injury levels (EIL) and their determination. IPM strategies for field and horticultural crops. IPM case histories. Constraints and Strategies of IPM implementation. Plant quarantine laws and regulations.

Unit 10: Pesticide Application Equipment

Types of appliances: sprayers, dusters, fog generators, smoke generators, soil injecting guns, seed treating drums, flame throwers, etc. Types of nozzles, international classification, their uses, spray patterns, particle size, measurement, drift and non target effects of pesticides. Maintenance of appliances. Aerial application-principles, guidelines, factors affecting the effectiveness, systems, advantages and disadvantages.

Unit 11: Pests of Field Crops and their Management

Distribution, host range, biology and bionomics, nature of damage and management of arthropod pests of cereals, millets, nutricereals, oilseeds, pulses, fibre crops, green manures, sugarcane and tobacco. Pests of importance: locusts, termites, hairy caterpillars, cut worms white grubs and invasive alien pests. Vertebrate and molluscan pests.

Unit 12: Pests of Horticultural Crops and their Management

Distribution, host range, biology and bionomics, nature of damage and management of arthropod pests of vegetables, fruits, plantation crops, spices, condiments, medicinal and aromatic crops, ornamentals, underutilized and exotic fruits. Pest management under protected cultivation. Pests of mushrooms. Vertebrate and molluscan pests.

Unit 13: Pests of Stored Products and their Management

Principles of grain storage. Storage structures, bulk storage and bag storage their merits and demerits. Grain drying methods and aeration. Storage losses, sources of infestation, factors influencing losses. Insect pests in storage, biology, and nature of damage. Non-insect pests (rodents, birds, mites) and their nature of damage. Management methods: Physical, Mechanical, Chemical, Biological, Behavioural, Legal and special storage methods. Microflora in storage environment and their control. Regulated and quarantine pests. Integrated management of storage pests.

Unit 14: Insect and mite vectors of Plant Diseases

History of vector pathogen interactions, important vectors of plant diseases, ecology of vector pathogen interaction Common insect and mite vectors *viz.*, aphids, leaf hoppers, plant hoppers, whiteflies, thrips, psylids, beetles, weevils, flies, and mites and their relationship with the plant pathogenic fungi, bacteria, viruses, mycoplasma. Mechanism of pathogen transmission: Active mechanical transmission, biological transmission. Toxicogenic insects, mites and phytotoxemia. Some important arthropod vector transmitted diseases and their epidemiology in India. Management of vector and its effect on control of diseases. Role of climate change in vector borne diseases.

Unit 15: Honey Bees and Bee-keeping

History of bee-keeping. Honey bees and their economic importance. Bee products. Bee species, their behaviour, habit and habitats. Bee Keeping: bee pasturage, hives and equipments, seasonal

management. Bee poisoning. Bee enemies including diseases and their management. Quality analysis of honey. Pollinators and their role in production of various crops. Conservation of pollinators.

Unit 16: Silkworms and Sericulture

Silkworm species, salient features, systematic position. Production techniques of mulberry, muga, eri and tassar silkworms. Nutritional requirements of silkworms. Sericulture: rearing house and appliances, silkworm breeds, principles of voltinism and moultinism, seed production and its economics. Different molecular approaches in developing silkworm breeds. transgenic silkworm-Mulberry pests, diseases and their management. By products of sericulture and its value addition, uses in pharmaceutical industry. Enemies and diseases of silkworms and their management. Sericulture organization in India.

Unit 17: Lac Insect

Lac insect, its biology, habit and habitats, lac products, uses. Host Trees: pruning, inoculation, lac cropping techniques, and harvesting. Enemies of lac insect and their control

Unit 18: Helpful and Useful Insects

Pollinators and their role in production of various crops. Conservation of pollinators. Pollinators, insects as food, soil fertility improving agents, scavengers. Use of insects and insect products in medicines. Insects as bio-indicators. Usefulness of insects in scientific investigations

Unit 19: Statistics and Computer Application

Frequency distribution, mean, mode and median. Standard, normal, bionomial and Poisson's distribution, Sampling methods and standard errors. Correlation and regression: Partial and multiple, tests of significance; t, F, chi- square, Duncan's multiple range tests. Design of experiments: Principles of Randomized block design, Completely randomized block design, Latin square design, Split-plot designs. Probit analysis. Use of software packages like SPSS, SAS, etc. for the above tests and designs of experiments for analysis.

PLANT PATHOLOGY

Unit 1: History and Principles of Plant Pathology

Milestones in phytopathology with particular reference to India. Major epidemics and their social impacts. Historical developments of chemicals, legislative, cultural and biological protection measures including classification of plant diseases. Physiologic specialization, Koch's postulates. Growth, reproduction, survival and dispersal of plant pathogens. Factors influencing infection, colonization and development of symptoms.

Unit 2: Laboratory and Analytical Techniques

Preparation and sterilization of common media. Methods of isolation of pathogens and their identification. Preservation of microorganisms in pure culture. Methods of inoculation. Measurement of plant disease.

Detection and Diagnosis of pathogens in seeds and other planting materials: Nucleic acid probes, Southern, Northern and Western hybridization, ELISA, ISEM and PCR. Nucleic acid probes, Southern, Northern and Western hybridization, ELISA, ISEM and PCR. Laboratory equipment and their use: autoclave, hot air oven, laminar flow, spectrophotometer, electrophoresis, light and electron microscopy, incubator, ultracentrifuge, ELISA Reader, Freeze dryer, Nano drop, GC-MS, HPLC, Thermocycler.

Unit 3: Physiological and Molecular Plant Pathology

Altered metabolism of plants under biotic and abiotic stresses. Molecular mechanisms of pathogenesis: elicitors, recognition phenomenon, penetration, invasion, primary disease determinant. Enzymes and toxins in relation to plant disease. Mechanisms of resistance, Structural and Biochemical defense mechanisms. R-Genes, Phytoanticipins. Phytoalexins. PR proteins, Hydroxyproline rich glycoproteins (HRGP). Antiviral proteins. SAR and ISR. HR and active oxygen radicals. Elementary genetic engineering. Management of pathogens through satellite, antisense - RNA. Ribozymes, coat protein, RNA interference, plantibodies, hypovirulence, cross protection. Useful genes and promoters, plant transformation techniques, biosafety and bioethics.

Unit 4: Mycology

Classification of fungi (According to the Classification – Kirk *et al.*, 2008). Life cycles of important phytopathogenic fungi. Economic mycology, edible fungi and entomogenous fungi. Mycorrhizal associations. Cell organelles, their morphology, functions and chemical composition.

Unit 5: Plant Bacteriology

Identification and classification of bacteria. morphology, ultrastructure and chemical composition of prokaryotic cell in relation to function. Growth curve, nutrition and auxotrophic mutants. Resting cells in elementary bacterial genetics and variability: transformation, conjugation, transduction. Biology of extra chromosomal elements: plasmid borne genes and their expression.

Bacteriophages: lytic and lysogenic cycles. Prokaryotic inhibitors and their mode of action. Economic uses of prokaryotes. Morphology, biochemical characteristics, reproduction and life cycle of phytoplasma and other fastidious prokaryotes.

Unit 6: Plant Virology

Nature, composition and architecture of viruses and viroids. Properties of viruses. Nomenclature and classification of viruses. Variability in viruses. Satellite viruses and satellite RNA. Mycoviruses and baculoviruses. Assay of plant viruses including biological, physical, chemical, serological and molecular methods. Conventional and biotechnological techniques used in detection and diagnosis. Behaviour of viruses in plants including infection, replication and movement. Histopathological changes induced by viruses in plants, inclusion bodies. Transmission of viruses: virus - vector relationships.

Unit 7: Plant Disease Epidemiology

Concepts in epidemiology. Development of disease in plant population. Monocyclic and polycyclic pathogens. Role of environment and meteorological factors in the development of plant disease epidemics. Survey, surveillance (including through remote sensing), and prediction and forecasting of diseases. Epidemic analysis and prediction models. Crop loss assessment: critical and multiple point models. Decision support system, cloud computing, GPS, GIS and GS in plant disease epidemiology.

Unit 8: Phanerogamic Parasites and Non-parasitic Diseases

Diseases caused by Phanerogamic parasites and their management. Diseases due to unfavourable soil environment, drought and flooding stress etc. Nutritional deficiencies. Primary /secondary air pollutants and acid rain.

Unit 9: Fungal Diseases of Crop Plants

Fungal diseases of cereals, millets, oilseeds, pulses, fruits, vegetables, plantation, fiber, spices, medicinal and ornamental crops with special reference to etiology, disease cycle, perpetuation, epidemiology and management. Postharvest diseases in transit and storage; aflatoxins and other mycotoxins and their integrated management.

Unit 10: Bacterial and Viral Diseases of Crop Plant

Crop diseases of cereals, pulses, oilseeds, sugar crops, vegetables, fruits, plantation and fiber crops caused by bacteria, viruses, viroids, phytoplasmas and other fastidious prokaryotes. Mode of transmission and pathogen vector relationships. Epidemiology and management.

Unit 11: Management of Plant diseases

General principles of plant quarantine. Exotic pathogens and pathogens introduced into India. Sanitary and phytosanitary issues under WTO, TRIPS and PRA. Genetic basis of disease resistance and pathogenicity: gene for gene hyphothesis;; breeding for disease resistance.

Production of disease free seeds and planting materials. Seed certification. Chemical nature and classification of fungicides and antibiotics: their bioassay and compatibility with other agricultural chemicals; resistance to fungicides/ antibiotics; effect on environment. Spraying and dusting equipments, their care and maintenances. Important cultural practices and their role in disease management, solarization, integrated disease management. Microorganisms antagonistic to plant pathogens in soil, rhizosphere and phyllosphere and their use in the control of plant disease; soil fungistasis.

AGRICULTURAL ECONOMICS

Unit 1: Economic Theory

Nature, Scope and methods of economics-Economic systems- Basic economics concepts in economics- Theory of consumer behaviour –cardinal utility approach-ordinal utility approach-indifference curve analysis-income and substitution effect-derivation of demand – applications of indifference curve analysis- revealed preference hypothesis- elasticity of demand and determinants-consumer surplus- Neo-classical theory of Production- Production function – Isoquants – Properties – homogenous production functions and Returns to scale - Technical progress– definition and types. -Profit maximization –Neoclassical theory of costs – Derivation of various types of cost curves- Cost minimization vs. profit maximization. Modern theory of costs-Derivation of supply and lay of supply-producer's surplus.

Market classification-pure and perfect competition. Characteristics and price determination under perfect and imperfect markets (monopoly, oligopoly and monopolistic competition)-- Theory of income distribution and factor shares- General Equilibrium theory- Pareto optimality- Social welfare function- National income-concepts and measurement methods- Theory of employmentclassical. Keynesian and post Keynesian theories of income determination. Consumption, Investment and saving functions-Concept of multipliers and accelarators- general equilibrium of product and money markets-IS and LM framework-inflation-types and control measures, Monetary and fiscal policies-instruments and effectiveness.

Unit 2: Economic and Agricultural Development

Concept of economic development and economic growth-indicators and measurement-Criteria and characteristics of developing nations-economic and non-economic factors of economic growth-, stages and theories of economic development- economic growth models-classical and neo-classical growth models, role of state, markets and civil society in economic development, institutions and economic development, international development institutionsObjective and processes for economic planning in India, economic and trade reforms in India.

Role of agriculture in economic development, theories of agricultural development, agricultural policies (price, land, credit, R&D, trade, subsidy, etc.)-agricultural development issues-poverty, inequality, unemployment and environmental degradation-agricultural development programmes in India, issues of water, energy, environment, food and nutrition security, agro-eco -regional planning, assessment of ecosystem services, farm-non-farm linkages.

Unit 3: Public Finance and International Economics

Public Finance: Public and private finance. General principles of public finance. Principle of maximum social advantage. Public revenue. Incidence of tax and financial policies. Public expenditure and economic development. Balanced and unbalanced budgets. Limitations of fiscal policies. Fiscal policy as an instrument of development. Structure of development taxation. Public debt policy and economic development, international Economics: Principle of

comparative advantage. Factor endowment theory, Balance of payments. . Trade with many goods and countries; Leontief paradox; human skills; technological gaps; the product cycleTrade policy: Protection; tariff and non-tariff measures; trade and market structure; trade liberalisation; factor mobility and movements; role of multinational enterprises. National competitive advantage – Porter's diamondProblems of international monetary systems, Foreign trade and foreign capital. Export promotion and input substitution. Past experiences and future strategies.

Unit 4: Farm Management Economics

Definition of farm management and its relationship to technical and social sciences. Characteristics of modern farming. Role and functions of farm management under Indian condition. Measurement of management. Measures of farm efficiency. Cost concepts. Evaluation of farm assets and liabilities. Decision theory and decision making models. Decision making under different knowledge situations. Tools and techniques in farm decision making. Farm planning and budgeting-sources of data and illustration. Linear programming. Problem formulation in farm planning. Farm records and accounts. Farm inventory with applications to farming enterprises. Farm cost accounting for managerial analysis. Management of farm resources-land, labour, capital and machinery. Review of farm management research, education and extension in relation to changing needs. Systems approach in agriculture. Farming systems, identification of farming system inputs and outputs, sub-systems and the circuitry connecting these systems. Systems analysis to find out needed changes in policies and programmes.

Unit 5: Agricultural Production Economics

Nature and scope of agricultural production economics vis-à-vis farm management. Relative importance of farm production economics and farm management in developed and developing countries. Economics of farm production- resource allocation and use under static and dynamic conditions. Resource — product relationships in agriculture. Types of production functions, frontiers technical and allocative efficiency. General rules of their economics application. Technological change and production function analysis. Principles of choice and allocation of resources. Resource combination and cost minimization economies of scale and economies of size. Types of risk in agriculture, resource allocation and enterprise combination under risk and risk diffusion mechanisms. Nature of costs and family farm theory. Returns to scale and farm size. Dualities between production, cost and profit functions; Derivation of supply and factor demand functions from production and profit functions.

Unit 6: Agricultural Finance and Co-operation

Role of credit in agriculture and rural development. Estimates of agricultural credit requirements-investment, production, marketing and consumption. Role of public and private section banks and cooperatives in development financing. Classification of agricultural credit. Rural credit structure. Principles of agricultural finance and financial management. Agricultural finance as a part of public finance. Nexus between commercial banks and cooperative credit institutions. Recent innovations in extension of credit to agriculture. Rural credit supply and

credit gap. Multiagency approach and coordination of credit structure at different levels. Agriculture credit policy. Principles and practices of cooperation. Success and failure of cooperative sector in India. Credit and non-credit institutions. National federations of cooperative organizations. Review of reforms in cooperative structure. Single window approach in agricultural input supply and output marketing. Bureaucracy and cooperatives. Management of cooperative institutions. Professionalization and revitalization of cooperatives. Role of cooperatives under new economic policy Risks in financing agriculture. Risk management strategies and coping mechanism. Crop Insurance programmes – review of different crop insurance schemes – yield loss and weather based insurance and their applications.

Unit 7: Agricultural Marketing

Nature and scope of marketing in a developing economy. Classification of markets. Problems of marketing agricultural produce. Functions of marketing. Marketable surplus and marketed surplus. Channels of marketing agricultural produce and price spread Market Sructure, Conduct and Performance (SCP). Marketing institutions, their role and functions. Regulated markets and other state interventions in agricultural marketing. Role of commission on agriculture cost and prices and parastatal organizations in agricultural marketing. Cooperative marketing. Marketing practices and cost-marketing of grains, pulses, commercial crops, fruits, vegetables, livestock and livestock products and inputs. Processing, transportation, storage and warehousing, equity aspects of marketing. Marketing efficiency. Marketing finance-methods and practices. Forward trading and speculation. Future markets. Market management. Agricultural price analysis. Seasonal and spatial variations in prices in agricultural price policy. Agricultural exports, problems and prospects. Role of information technology and telecommunication in agricultural marketing.

Unit 8: Agricultural Project Analysis

Definition of project in agriculture. Need for project approach for agricultural development. Project cycle. Project identification and formulation. Project appraisal-ex-ante and ex-post. Projection worth measures-discounting techniques, net work techniques –PERT and CPM. Project monitoring and mid-course corrections. Project funding.

Unit 9: Research Methodology and Econometrics

Agricultural economics research, steps and themes, collection and analysis of data, scientific report writing., econometric and statistical methods, sampling methods, probability theory. Multiple regression analysis, ordinary and generalized least squares estimators, BLUE, multicollinearity, heteroscedasticity, auto correlation, dummy variables. Simultaneous equation methods

Unit 1: Tropical and Dry Land Fruit Production

Commercial varieties of regional, national and international importance, eco-physiological requirements, recent trends in propagation, scion-stock relationship, planting systems, cropping systems, canopy management, nutrient management, water management, fertigation, role of bio-regulators, abiotic factors limiting fruit production, physiology of flowering, pollination, fruit set and development, honeybees in cross pollination, physiological disorders–causes and remedies, quality improvement by management practices; maturity indices, harvesting, grading, packing, storage and ripening techniques; industrial and export potential, Agri. Export Zones (AEZ) and industrial supports. Crops: Mango, Banana, Citrus, Papaya, Guava, Sapota, Annonas, Aonla, Bael, Wood apple, Jamun, Pomegranate, Ber and minor fruits of tropics.

Unit 2: Subtropical and Temperate Fruit Production

Commercial varieties of regional, national and international importance, eco-physiological requirements, recent trends in propagation, scion-stock relationship, planting systems, cropping systems, root zone and canopy management, nutrient management, water management, fertigation, role of bio - regulators, abiotic factors limiting fruit production, physiology of flowering, pollination, fruit set and development, honeybees in cross pollination, physiological disorders-causes and remedies, quality improvement by management practices; maturity indices, harvesting, grading, packing, storage and ripening techniques; industrial and export potential, Agri. Export Zones (AEZ) and industrial supports. Crops: Avocado, Pineapple, Jackfruit, Mangosteen, Carambola, Fig and Rambutan, Litchi, Loquat, Apple, Pear, Quince, Grapes, Plums, Peach, Apricot, Cherries, Persimmon, Kiwifruit, Strawberry, Walnut, Almond, Pistachio, Hazelnut.

Unit 3: Biodiversity and Conservation

Biodiversity and conservation; issues and goals, centres of origin of cultivated fruits; primary and secondary centres of genetic diversity; present status of gene centres; exploration and collection of germplasm; Role of NAGS ; Conservation of genetic resources–conservation *insitu* and *exsitu*. Germplasm conservation – problem of recal citrancy-cold storage of scions, tissue culture, cryopreservation, pollen and seed storage; inventory of germplasm, introduction of germplasm, plant quarantine; intellectual property rights, regulatory horticulture. Detection of local biodiversity, geographical indication. Crops: Mango, Sapota, Citrus, Guava, Banana, Papaya, Grapes, Jackfruit, Custard apple, Ber, Aonla, Malus &*Prunus* sp., Litchi andNuts.

Unit 4: Canopy Management in Fruit Crops

Canopy management - importance and advantages; factors affecting canopy development;

Canopy types and structures with special emphasis on geometry of planting, canopy manipulation for optimum utilization of light. Light interception and distribution in different types of tree canopies; Spacing and utilization of land area - canopy classification; Canopy management through rootstock and scion; Canopy management through plant growth retardants, training and pruning and management practices; Canopy development and management in relation to growth, flowering, fruiting and fruit quality in temperate fruits, Grapes, Mango,Sapota,Guava,Citrus and Ber.

Unit 5: Breeding of Fruit Crops

Origin and distribution, taxonomical status - species and cultivars, cytogenetics, genetic resources, blossom biology, breeding systems, breeding objectives, breeding constraints ideo types, approaches for crop improvement – introduction, selection, hybridization, mutation breeding, polyploidy breeding, rootstock breeding, improvement of quality traits, resistance breeding for biotic and abiotic stresses, biotechnological interventions, achievements and future thrust in the following selected fruit crops. Crops: Mango, Banana, Pineapple, Citrus, Grapes, Guava, Sapota, Jackfruit, Papaya, Custard apple, Aonla, Avocado, Ber, Litchi, Jamun, Phalsa, Mulberry, Raspberry, Apple, Pear, Plums, Peach, Apricot, Cherries and Strawberry.

Unit 6: Post-Harvest Technology

Maturity indices, harvesting practices and grading for specific market requirements, influence of pre-harvest practices, enzymatic and textural changes, respiration, transpiration; Physiology and biochemistry of fruit ripening, ethylene evolution and ethylene management, factors leading to post-harvest loss, pre-cooling; Treatment prior to shipment, *viz.*, chlorination, waxing, chemicals, bio-control agents and natural plant products, fungicides, hot water, vapour heat treatment, sulphur fumigation and irradiation. Methods of storage-ventilated, refrigerated, MAS, CA storage, physical injuries and disorders; Packing methods and transport, quality evaluation, principles and methods of preservation, food processing, canning, fruit juices, beverages, pickles, jam, jelly, candy; Dried and dehydrated products, nutritionally enriched products, fermented fruit beverages, packaging technology, processing waste management and food safety standards; Role of HACCP.

Unit 7: Growth and Development

Definition, parameters of growth and development, growth dynamics, morphogenesis; Annual, semiperennial and perennial horticultural crops, environmental impact on growth and development, effect of light, photosynthesis and photoperiodism, vernalisation, effect of temperature, heat units, thermoperiodism; Assimilate partitioning during growth and development, influence of water and mineral nutrition during growth and development, biosynthesis of auxins, gibberellins, cytokinins, abscisic acid, ethylene, brassinosteroids, growth inhibitors, morphactins, role of plant growth promoters and inhibitors, developmental physiology and biochemistry during dormancy, bud break, juvenility, vegetative to reproductive interphase, flowering, pollination, fertilization and fruit set, fruit drop, fruit growth, ripening and seed development; Growth and developmental process during stress - manipulation of growth and development, impact of pruning and training, chemical manipulations in horticultural crops, molecular and genetic approaches in plant growth development.

Unit 8: Biotechnology of Fruit Crops

Harnessing bio-technology for improvement of horticultural crops, influence of plant materials, physical, chemical factors and growth regulators on growth and development of plant cell, tissue and organ culture; Callus culture -types, cell division, differentiation, morphogenesis, organogenesis, embryogenesis; Use of bioreactors and *in vitro* methods for production of secondary metabolites, suspension culture, nutrition of tissues and cells, regeneration of tissues, *ex vitro*, establishment of tissue culture plants; Physiology of hardening - hardening and field transfer, organ culture-meristem, embryo, anther, ovule culture, embryo rescue, soma clonal variation, protoplast culture and fusion; Construction and identification of somatic hybrids and cybrids, wide hybridization, *in vitro* pollination and fertilization, haploids, *in vitro* mutation, artificial seeds, cryopreservation, rapid clonal propagation, genetic engineering and transformation in horticulture crops, use of molecular markers. *In vitro* selection for biotic and abiotic stress, achievements of biotechnology in horticultural crops and application of gene editing tools in horticultural crops.

Unit 9: Protected Fruit Culture

Greenhouse – world scenario, Indian situation; present and future, different agro-climatic zones in India, environmental factors and their effects on plant growth; Basics of green house design, different types of structures-glasshouse, shade net, poly tunnels-Design and development of low cost green house structures; Interaction of light, temperature, humidity, CO2, water on crop regulation - Greenhouse heating, cooling, ventilation and shading; Types of ventilation-Forced cooling techniques-Glazing materials-Micro irrigation and Fertigation; Automated green houses, microcontrollers, waste water recycling, management of pest and diseases-IPDM.

Unit 10: Principles and Practices of Plant Propagation

Introduction, life cycle in plants, cellular basis for propagation. Sexual propagation – apomixis, polyembryony, chimeras. Factors influencing seed germination, hormonal regulation of germination and seedling growth. Seed quality, treatment, packing, storage, certification and testing. Rooting of cuttings under mist and hot beds. Physiological, anatomical and biochemical aspects of root induction in cuttings. Selection of elite mother plants. Establishment of bud wood bank. Stock, scion and inter stock relationship and incompatibility. Physiology of dwarfing rootstocks. Rejuvenation of senile and seedling orchards progeny orchard and scion bank. Micropropagation *In vitro* clonal propagation, director ganogenesis, embryogenesis, micro grafting and meristem culture. Hardening, packing and transport of micro-propagules.

AGRONOMY

Unit 1: Crop Ecology and Geography

Principles of crop ecology; Ecosystem-concept and determinants of crop productivity; Physiological limits of crop yield and variability in relation to ecological optima; Crop adaptation; Climate shift and its ecological implication; Greenhouse effect; Agro-ecological and agro climatic regions of India; Geographical distribution of cereals, legumes, oilseeds, vegetables, fodders and forages, commercial crops, condiments and spices, medicinal and aromatic plants; Adverse climatic factors and crop productivity; Photosynthesis, respiration, net assimilation, solar energy conversion efficiency and relative water content, light intensity, water and CO_2 in relation to photosynthetic rates and efficiency; Physiological stress in crops, detection and indices; Remote sensing: Spectral indices and their application in agriculture.

Unit 2: Weed Management

Scope and principles of weed management; Weed classification, biology, ecology and allelopathy; Weed seed dormancy, Crop weed competition, weed threshold; Herbicides classification, formulations, mode of action, selectivity and resistance; Persistence of herbicides in soils and plants; Application methods and equipment; Cultural, physical, chemical and biological weed control, bio-herbicides: Integrated weed management; Special weeds, parasitic and aquatic weeds and their management in cropped and non-cropped lands; weed control schedules in field crops, vegetables and plantation crops; Role of Genetically Modified (GM) crops in weed management.

Unit 3: Soil Fertility and Fertilizer Use

History of soil fertility and fertilizer use; Concept of essentiality of plant nutrients, their critical concentrations in plants, nutrient interactions, diagnostic techniques with special emphasis on emerging deficiencies of secondary and micro-nutrients; Soil fertility and productivity and their indicators; Fertilizer materials including liquid fertilizers, their composition, mineralization, availability and reaction in soils; Water solubility of phosphate fertilizers; Slow release fertilizers, nitrification inhibitors and their use for crop production; Principles and methods of fertilizer application including fertigation; Integrated nutrient management and bio-fertilizers; Agronomic and physiological efficiency and recovery of applied plant nutrients; Criteria for determining fertilizer schedules for cropping systems - direct, residual and cumulative effects; Fertilizer related environmental problems including ground water pollution; Site-specific nutrient management.

Unit 4: Dryland Agronomy

Concept of dryland farming; dryland farming Vs rainfed farming; History, development, significance and constraints of dryland agriculture in India; Climatic classification and delineation of dryland tracts; Characterization of agro-climatic environments of drylands; Rainfall analysis and length of growing season; Types of drought, effect on plant growth,

drought resistance, drought avoidance, drought management; Crop Planning including contingency, crop diversification, varieties, cropping systems and mid-season corrections for aberrant weather conditions; Techniques of moisture conservation in-situ to reduce evapotranspiration, runoff and to increase infiltration; Rain water harvesting and recycling concept, techniques and practices; Summer ploughing, seed hardening, pre-monsoon sowing, weed and nutrient management; Concept and importance of watershed management in dryland areas.

Unit 5: Crop Production

Crop production techniques for cereals, millets, pulses /grain legumes, oilseeds, fiber crops, sugarcane, tobacco, fodder and pasture crops including origin, history, distribution, adaptation, climate, soil, season, modern varieties, seed rate, fertilizer requirements, crop geometry, intercultural operations, water requirement, weed control, harvest, quality components, industrial use, economics and post-harvest technology. Package of practices in the respective locations.

Unit 6: Agricultural Statistics

Frequency distribution, standard error and deviation, correlation and regression analyses, coefficient of variation; Tests of significancet test, F test and chi-square (x_2) ; Data transformation and missing plot techniques; Design of experiments and their basic principles, completely randomized, randomized block, split plot, strip-plot, factorial and simple confounding designs; Efficiency of designs; Methods of statistical analysis for cropping systems including intercropping; Pooled analysis.

Unit 7 : Sustainable Land Use Systems

Tillage - Concept, types, tilth, tools and implements; Modern concepts of tillage and conservation agriculture; Land capability classification, Alternate land use and Agro forestry systems; Types, extent and causes of wasteland; Shifting cultivation; Concept of sustainability; Sustainability parameters and indicators; Agricultural and agro-industrial residues and its recycling.

Unit 8: Soil-Plant-Water Relationship

Importance of water in agriculture; Hydrological cycle; runoff and infiltration, factors affecting infiltration; Soil water relations, water retention by soil, soil moisture characteristics, field capacity, permanent wilting point, plant available water and extractable water; Soil irrigability classifications, Determination of soil water content, computation of soil water depletion, soil water potential and its components; Movement of soil water-saturated and unsaturated water flow; Evapotranspiration (ET), PET, AET and its measurements. Crop co-efficient; Plant water relations: Concept of plant water potential, its components; Methods of moisture estimation in plants. Soil and water conservation – measures – agronomical, mechanical and agrostological.

Unit 9: Irrigation Water Management

History of irrigation in India; Major irrigation projects in India; Water resource development; Crop water requirements; Concepts of irrigation scheduling, Different approaches of irrigation scheduling; Concept of critical stages of crop growth in relation to water supplies; Methods of irrigation *viz*. surface, subsurface and pressurized irrigation methods, merits and demerits; Measurement of irrigation water, application and distribution efficiencies. Conjunctive use of water; Interaction between irrigation and fertilizers.

Unit 10: Management of Problematic Soils and Crop Production

Problem soils and their distribution in India, acidic, saline, waterlogged and mined- soils; Response of crop to acidity, salinity, excess water and nutrient imbalances; Reclamation of problem soils, role of amendments and drainage; Crop production techniques in problem soils – crops, varieties, cropping system and agronomic practices; Degraded lands and their rehabilitation. Management strategies for flood prone areas; Drainage for improving water logged soils for crop production; Crop production and alternate use of problematic soils and poor quality water for agricultural.

Unit 11: Cropping and Farming Systems and Organic Farming

Cropping system – Definition, principles, classification; Cropping system for different ecosystem; Interaction and indices; Non-monetary inputs and low cost technologies.LEIA, HEIA and LEISA;Farming systems – type – natural, bio-dynamic, bio-intensive, response, precision, biological and organic farming; organic and bio inputs, Soil health and organic matter and Integrated organic farming systems; IFS – concepts, models for different ecosystem, resource recycling and evaluation.

SOIL SCIENCE

Unit 1: Pedology

Concept of land, soil and soil science. Composition of earth crust and its relationship with soils; Rocks, minerals and other soil forming materials; Weathering of rocks and minerals; Factors of soil formation; Pedogenic processes and their relationships with soil properties; Soil development; Pedon, polypedon, soil profile, horizons and their nomenclature. Soil Taxonomy epipedons, diagnostic subsurface horizons and other diagnostic characteristics, soil moisture and temperature regimes, Interpretation of soil survey data for land capability and crop suitability classifications, Fertility Capability Classification- Nutrient indexing. Macro-morphological study of soils. Application and use of global positioning system for soil survey. Soil survey- types **and** techniques. Soil series characterization and procedure for establishing soil series, benchmark soils and soil correlations. Study of base maps: cadastral maps, toposheets, aerial photographs and satellite imageries. Use of geographical information system for preparing thematic maps. Application of Remote Sensing in soil survey and mapping. Soils of India

Unit 2: Soil Physics

Significance of soil physical properties. Soil texture – Stoke's Law- textural classes. Soil structure – classification, soil aggregation and significance, soil consistency, bulk density and particle density of soils and porosity, their significance and manipulation. Soil water- retention and potentials. Soil moisture constants. Movement of soil water- saturated and unsaturated flow-Darcy's law - hydraulic conductivity - infiltration, percolation, permeability, drainage and methods of determination of soil moisture. Thermal properties of soils, soil temperature. Soil air-composition, gaseous exchange, influence of soil temperature and air on plant growth. Soil physical constraints affecting crop production and their management strategies.Methods of soil analysis - particle size distribution, bulk and particle density, moisture constants. Soil erosion - types, effects,. Rain erosivity and soil erodibility. Runoff - methods of measurement, factors and management. Soil conservation measures. Characterization and evaluation of soil and land quality indicators; Causes of land degradation; Management of soil physical properties for prevention/restoration of land degradation; management of waste lands; Concept of watershed – its characterization and management.

Unit 3: Soil Chemistry

Chemical composition of soil; Soil colloids - structure, composition, constitution of clay minerals, amorphous clays and other non-crystalline silicate minerals, oxide and hydroxide minerals; Charge development on clays and organic matter; pH-charge relations; Buffer capacity of soils. Inorganic and organic colloids- surface charge characteristics, diffuse double layer, zeta potential. Soil organic matter fractionation, humus formation and theories clay-organic interactions. Cation exchange – Hysteresis-definition. Nitrogen, potassium, phosphorus and ammonium fixation in soils and management aspects.

Unit 4: Soil Fertility

Essential elements in plant nutrition; Nutrient cycles in soil; Transformation and movement of nutrients (Macro and micro nutrients) in soil; Manures and fertilizers; Fate and reactions of fertilizers in soils; Slow release fertilizers and nitrification retarders- Soil fertility evaluation-Concepts and approaches ;. FCO Soil fertility evaluation – soil testing, plant and tissue tests and biological methods; Common soil test methods for fertilizer recommendation; Nutrient Management concepts- INM, IPNS, SSNM- Soil test-crop response correlations; Fertilizer application methods- Nutrient use efficiency- Macro and micronutrients. Nature, properties and development of acid, acid sulphate, saline and alkali soils and their management; Lime and gypsum requirements of soils; Irrigation water quality - EC, SAR, RSC. Fertility status of soils of India. Pollution: types, causes, and management. Carbon sequestration and carbon trading. Modern methods of soil, plant and fertilizer analysis; Flame photometry and inductively coupled plasma optical emission spectroscopy; Spectrophotometry - visible, ultra-violet and infrared; Atomic absorption spectrophotometry; Potentiometry and conductimetry; X-ray diffractometry; Mass spectrometry.

Unit 5: Soil Microbiology

Soil biota, soil microbial ecology, types of organisms. Soil microbial biomass, microbial interactions, unculturable soil biota. Microbiology and biochemistry of root-soil interface. Phyllosphere. Soil enzymes, origin, activities and importance. Soil characteristics influencing growth and activity of microflora. Microbial transformations of N, P, K, S, Fe and Zn in soil. Biochemical composition and biodegradation of soil organic matter and crop residues. Humus formation. Cycles of important organic nutrients. Biodegradation of pesticides, organic wastes and their use for production of biogas and manures. Biofertilizers – definition, classification, specifications, method of production and role in crop production.

Unit 6: Statistics

Experimental designs for pot culture and field experiments; Statistical measures of central tendency and dispersion; Correlation and regression; Tests of significance - t and F tests; Computer use in soil research, Geostatistics.