

GALGOTIAS UNIVERSITY

Syllabus of

B.Tech. Biomedical Engineering

	School of Biomedical Sciences	
Name of School: _		
5000 NG 1	Biomedical Engineering	
Department:		
	2024-2025	
Year:		

About the School

The School of Biomedical Sciences at Galgotias University stands as a beacon of excellence in the realm of education, research, and innovation. With distinguished faculty members comprising renowned academicians and researchers from across India, the School is committed to nurturing the next generation of leaders in biotechnology, forensic science, and biomedical research.

Under the visionary leadership of Dean Prof. Ranjana Patnaik, an esteemed alumnus of Banaras Hindu University and former Professor at the Indian Institute of Technology (BHU), Varanasi, the School of Biomedical Sciences offers a comprehensive array of programs. The School provides the finest education in diverse domains critical to advancing healthcare and scientific discovery including Biotechnology, Forensic Science, Medical Biotechnology, Clinical Research & Healthcare, Clinical Nutrition & Dietetics and Food Technology.

Our faculty members are not only dedicated educators but also prolific researchers who actively contribute to the global body of knowledge in their respective fields. Through a commitment to cuttingedge research, they publish extensively in prestigious journals, develop patented technologies and organize research seminars to foster knowledge dissemination and exchange. This dedication to research excellence ensures that our students receive an education that is both rigorous and relevant to the evolving demands of the industry.

At the heart of the School of Biomedical Sciences is a vibrant community of over 1100 students, each empowered with deep technical knowledge and practical skills honed in state-of-the-art laboratories equipped with the latest infrastructure and equipment. Beyond classroom learning, students are encouraged to undertake research projects in collaboration with reputed academic institutions and industries, providing them with invaluable real-world experience and fostering a spirit of innovation and entrepreneurship.

The school's commitment to holistic education extends beyond academic pursuits. We believe in nurturing well-rounded individuals equipped with not only technical expertise but also strong ethical values and leadership qualities. To this end, we offer opportunities for extracurricular engagement through dedicated professional societies such as Forensis Agora, Sustainable Innovation and Forensis CyberDost Cell, where students can network, collaborate, and explore their interests beyond the confines of the classroom.

In essence, the School of Biomedical Sciences at Galgotias University is more than just an educational institution; it is a dynamic hub of learning, discovery, and innovation. Through a relentless pursuit of excellence in education and research, we strive to empower our students to become catalysts for positive change in the fields of Biotechnology, Forensic Science, Medical Biotechnology, Clinical Research & Healthcare, Clinical Nutrition & Dietetics and Food Technology, driving innovation and transforming healthcare for the betterment of society.

Vision: To be known globally for value-based education, innovation and multidisciplinary research in Biomedical Sciences, Biotechnology, Forensic Sciences and Criminology.

Mission

M1. Innovate solutions for evolving challenges in biomedical & healthcare sciences, addressing the societal needs effectively.

M2. Cultivate human potential to its zenith, nurturing intellectually adept leaders in healthcare, forensic sciences, and criminology.

M3. Conduct pioneering research to drive innovation in biomedical sciences, biotechnology, Clinical research, forensic sciences, and criminology, fostering collaborations on a national and global scale.

M4. Achieve excellence in education by fostering a dynamic learning environment that embraces diverse interests and talents, equipping students with contemporary knowledge and skills.

Program Educational Objectives (PEO)

PEO 1. Graduates shall conduct the research in healthcare, biomedical science and interdisciplinary field efficiently and ethically.

PEO 2. Graduates of biomedical engineering shall excel in higher studies and interdisciplinary research exhibiting global competitiveness.

PEO 3. Graduates have a high sense of medical responsibilities and ethical thinking and solve new/ unsolved/ unmet biomedical need.

Program Specific Outcomes (PSO)

Graduates of Biomedical Engineering shall be able to

PSO1. Evaluate critical domestic and global regulatory and health care issues that challenge and influence biomedical product development

PSO2. Demonstrate competencies in performing the biomedical research; evaluating, analysing and presenting the biomedical research results.

PSO3. Effectively communicate and collaborate with health care providers and regulatory agencies to develop culturally diverse domestic and global strategies for medical device approvals

PSO4. Demonstrate regulations, social and ethical values required to make a global biomedical research professional.

Program Outcomes

PO1- Biomedical Engineering Knowledge: Possess knowledge and comprehension of the core and basic knowledge associated with the profession of Biomedical Engineering, including Medical Instrumentation, Biomedical Circuits and Networks, Biomedical Control Systems, Biomaterials and Artificial Organs, Medical signal/image processing and analysis and Virtual Instrumentation Design For Medical Systems.

PO2- Planning Abilities: Demonstrate effective planning abilities including waste management, hospital management, Disaster management, delegation skills and organizational skills. Develop and implement plans and organize work to meet deadlines.

PO3- Problem analysis: Utilize the principles of Analytical thinking, clearly and critically, while solving problems and making decisions during development of medical devices. Find, analyse, evaluate and apply information systematically and making decisions related to biomedical research.

PO4- Modern tool usage: Learn and apply modern and appropriate tools related to biomedical research.

PO5- Leadership skills: Understand and consider the human reaction to change, motivation issues, leadership and team-building when planning changes required for fulfilment of practice, professional and societal responsibilities. Assume participatory roles as responsible citizens or leadership roles during the conduction of biomedical research to facilitate improvement in health and wellbeing.

PO6- Professional Identity: Understand, analyse and communicate the value of their professional roles in society

PO7- Biomedical Engineering Ethics: Honour human values and apply ethical principles in professional and social contexts. Demonstrate behaviour that recognizes cultural and personal variability in values, communication and lifestyles. Use ethical frameworks; apply ethical principles while making decisions during the conduction of biomedical research.

PO8- Communication: Communicate effectively with the biomedical research & healthcare community.

PO9- Biomedical Engineering and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety and legal issues and the consequent responsibilities relevant to the biomedical research practice.

PO10- Environment and sustainability: Understand the impact of the biomedical research solution in societal and environmental contexts, demonstrate the knowledge of, and need for sustainable development.

PO11- Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. Self-access and use feedback effectively from others to identify learning needs and to satisfy these needs on an ongoing basis.

About Program

The B.Tech. Biomedical Engineering program at the School of Biomedical Sciences, Galgotias University, offers a robust and interdisciplinary curriculum designed to equip students with the knowledge and skills needed to excel in the biomedical engineering field. This four-year program spans eight semesters, blending engineering principles with medical sciences to innovate and improve healthcare solutions.

Students will begin with foundational subjects such as Human Physiology, Engineering Mathematics, and Analog and Digital Electronics. They will delve into specialized courses like Biomedical Circuits and Networks, Medical Instrumentation, and Biomaterials and Artificial Organs, gaining insights into the design and functionality of medical devices. Advanced topics include Biomedical Control Systems, Medical Signal & Image Processing, and Advanced Biomedical Instrumentation, preparing students to handle complex biomedical systems and technologies.

Ethics and Professional Competency, Bioethics and Biosafety, and Hospital and Healthcare Administration courses ensure that graduates are well-versed in the ethical and managerial aspects of the profession. The curriculum also covers cutting-edge areas like Artificial Intelligence & Pattern Recognition, BioMEMS and Biosensors, and Molecular Diagnostics & Therapeutics, fostering innovation and research.

Practical skills are honed through subjects like Virtual Instrumentation Design for Medical Systems, Microprocessors and MicroControllers, and VLSI Design, while research-focused courses such as Research Methodology and Biostatistics prepare students for scientific inquiry and data analysis. Elective options and interdisciplinary subjects like Introduction to Biotechnology and Biomechanics allow students to tailor their education to their interests.

Curriculum

		Semester I							
Sl.	Course Code	Name of the Course					Assess	sment Pa	attern
No	Course Code	Name of the Course	L	Т	Р	S	IA	MTE	ETE
	BMET 1001	Chemical and Biological Materials/	3	0	0	0	20		
1		Bio-Materials and Implants/						30	50
1		Synthetic Chemistry/ Alternate						50	50
		Energy/ Nano Technology							
2	BMET 1002	Basic Electrical and Electronics	3	0	1	0	20	30	50
2		Engineering						50	50
3	BMET 1003	Programming for Problem Solving	2	0	1	1	20	30	50
4	BMET 1004	Elementary Maths -I	3	0	1	0	20	30	50
5	BMET 1005	Remedial Biology-I	3	0	0	0	20	30	50
6		Engineering Designand Prototyping	3	0	1	0	20	30	50
7	7 Yoga 0 0 0 20 30 50								
		Total Credits: 22							

		Semester II							
Sl.	Course Code	Name of the Course					Assess	sment Pa	attern
No	Course Coue	Name of the Course	L	Т	Р	S	IA	MTE	ETE
1	BMET 2001	Introduction to Digital System	2	0	1	0	20	30	50
2	BMET 2002	Environment Impact and Analysis	0	0	0	0	20	30	50
3	BMET 2003	Semiconductor andOptoelectronic Devices/ Modern Physics/Semiconductor Physics/Condensed Matter Physics	3	0	1	0	20	30	50
4	BMET 2004	Communication Skills for Engineers	2	0	1	0	20	30	50
5	BMET 2005	Elementary Maths-II	3	0	1	0	20	30	50
6		Remedial Biology-II	3	0	0	0	20	30	50
7		OOP (Object Oriented Programming)	3	0	1	1	20	30	50
	Total Credits: 22								

		Semester III							
Sl.	Course Code	Name of the Course					Assess	sment Pa	attern
No	Course Code	Name of the Course	L	Т	P	С	IA	MTE	ETE
1	BMET 3001	Human Physiology	3	0	0	3	20	30	50
2	BMET 3002	Medical Instrumentation-I	3	0	0	3	20	30	50
3	BMET 3003	Analog and digital electronics	3	0	0	3	20	30	50
4	BMET 3004	Engineering mathematics	3	0	0	3	20	30	50
5	BMET 3005	Biomedical Circuits and Networks	3	0	0	3	20	30	50
6	SLLL	Ethics and Professional Competency	1	0	0	1	20	30	50
7	BMET 3007/8	Elective-I	3	0	0	3	20	30	50
8	BMEP 3051	Physiology Lab	0	0	2	1	50		50
9	BMEP 3052	Bio-electronics Lab	0	0	2	1	50		50
10	BMEP 3053	Medical Instrumentation-I Lab	0	0	2	1	50		50
11	SOLE	Aptitude building and Logical	0	0	2	1	50		50
11		Reasoning							

		Semester IV							
Sl	Course Code	Nome of the Course					Asses	sment Pa	ttern
No	Course Code	Name of the Course	L	Т	Р	С	IA	MTE	ETE
1	BMET 4001	Biomedical Control Systems	3	0	0	3	20	30	50
2	BMET 4002	Medical Instrumentation-II	3	0	0	3	20	30	50
3	BMET 4003	Biomaterials and Artificial Organs	3	0	0	3	20	30	50
4	BMET 4004	Medical Informatics	3	0	0	3	20	30	50
5	BMET 4005	Data structure using C	3	0	0	3	20	30	50
6	BMET 4006/7	Elective-II	3	0	0	3	20	30	50
7	BMEP 4051	Biomedical Control Systems Lab	0	0	2	1	50		50
8	SOLE	Aptitude building and Logical Reasoning	0	0	2	1	50		50
9	BMEP 4052	Medical Instrumentation-II Lab	0	0	2	1	50		50
10	BMEP 4053	Data structure using C	0	0	2	1	50		50
		Total							
		Semester V		•					
SI	Course Code	Name of the Course					Asses	sment Pa	ttern
No	Course Code	Name of the Course	L	Т	Р	С	IA	MTE	ETE
1	BMET 5001	Research Methodology and Biostatistics	3	0	0	3	20	30	50
2	BMET 5002	Medical signal & Image processing	3	0	0	3	20	30	50
3	BMET 5003	Tissue Engineering & Microfluidics	3	0	0	3	20	30	50
4	BMET 5004	Bioethics and Biosafety	3	0	0	3	20	30	50
5	BMET 5005	Biopotentials	3	0	0	3	20	30	50
6	BMET 5006/7	Elective-III	3	0	0	3	20	30	50
7	BMEP 5051	Medical signal & Image processing Lab	0	0	2	1	50		50
8	BMEP 5052	Molecular Biology and Genetics Lab	0	0	2	1	50		50
9	BMEP 5053	Biopotentials Lab	0	0	2	1	50		50
10	SOLE	Aptitude building and Logical Reasoning	0	0	2	1	50		50
		Total							
		Semester VI							
Sl	Company Conta	Name of the Carrier					Asses	sment Pa	ttern
No	Course Code	Name of the Course	L	Т	Р	С	IA	MTE	ETE
1	BMET 6001	Biophysics & Biochemistry	3	0	0	3	20	30	50
2	BMET 6002	Automation And Quality Control In Biomedical Engineering	3	0	0	3	20	30	50
3	BMET 6004	Virtual Instrumentation Design For Medical Systems	3	0	0	3	20	30	50
4	BMET 6005	Advanced Biomedical Instrumentation	3	0	0	3	20	30	50
5	BMET 6006/7	Elective-IV	3	0	0	3	20	30	50
6	BMEP 6051	Biophysics & Biochemistry Lab	0	0	2	1	50		50
7	BMEP 6052	Automation And Quality Control In Biomedical Engineering Lab	0	0	2	1	50		50
8	BMEP 6054	Virtual Instrumentation Design and AI Lab	0	0	2	1	50		50

			-	-	-				
9	SOLE	Aptitude building and Logical Reasoning	0	0	2	1	50		50
10	BMEP 6055	Campus to corporate/UG Project/ Industrial Training	0	0	6	3	50		50
		Total							
	Semester VII								
S1	Course Code	Name of the Course				1	Assess	ment Pa	ttern
No	Course Coue		L	Т	Р	С	IA	MTE	ETE
1	BMET 7001	BioMEMS and Biosensors	3	0	0	3	20	30	50
2	BMET 7002	Artificial Intelligence & Pattern Recognition	3	0	0	3	20	30	50
3	BMET 7003	Modeling of Physiological System	3	0	0	3	20	30	50
4	BMET 7004	Hospital and Healthcare Administration	3	0	0	3	20	30	50
5	BMET 7005	Fundamentals of Clinical Research	3	0	0	3	20	30	50
6	BMET 7006/7	Elective-V	3	0	0	3	20	30	50
7	SLLL	Disaster Management	2	0	0	2	20	30	50
8	BMEP 7051	Artificial Intelligence & Pattern Recognition Lab	0	0	2	1	50		50
9	BLE601/ BLE602/BLE6 03	Foreign Language - 1 (German, Japneese, French) *Compulsory Open Elective	0	0	4	2	50		50
		Total							
		Semester VIII	[
Sl	Course Code	Name of the Course					Assess	ment Pa	ttern
No	Course Coue		L	Т	Р	С	IA	MTE	ETE
1	BMEP 8051	Major Project	0	0	24	12	60		240

List of Electives

Ele	ctiv	e-I									
S	Sl Course Code		Name of the Electives					Assessment Pattern			
N	lo	Course Code	Name of the Electives	L	Т	Р	С	IA	MTE	ETE	
		BMET 3007	Electronic Measurement and	3	0	0	3	20	30	50	
	1		Instrumentation for Biomedical								
			Applications								
	2	BMET 3008	Introduction to Biotechnology	3	0	0	3	20	30	50	

Elective-II

Sl	Course Code	Now a of the Elections					Assessment Pattern			
No	Course Code	Name of the Electives	L	Т	Р	С	IA	MTE	ETE	
1	BMET 4006	Biomechanics	3	0	0	3	20	30	50	
2	BMET 4007	Microprocessors and MicroControllers	3	0	0	3	20	30	50	

Elective-III

Sl	Course Code Name of the Electives						Assess	ment Patt	ern
No	Course Code	Name of the Electives	L	Т	Р	С	IA	MTE	ETE
1	BMET 5006	Linear Integrated Circuits	3	0	0	3	20	30	50
2	BMET 5007	Drug Discovery and Development	3	0	0	3	20	30	50

Elective-IV

Sl	Course Code	Course Code Name of the Electives					Assessment Pattern			
No	Course Code	Name of the Electives	L	Т	Р	С	IA	MTE	ETE	
1	BMET 6006	VLSI Design	3	0	0	3	20	30	50	
2	BMET 6007	Biotransport Process	3	0	0	3	20	30	50	

Elective-V

Sl	Course Code	e Name of the Electives					Assessment Pattern			
No	Course Coue		L	Т	Р	С	IA	MTE	ETE	
1	BMET 7006	Introduction to Bioinformatics	3	0	0	3	20	30	50	
2	BMET 7007	Molecular Diagnostics & Therapeutics	3	0	0	3	20	30	50	

NOTE:

The syllabus content is subject to revision based on stakeholder feedback and Academic Requirements.

Detailed Syllabus

Semester III

Name of The Course	Human Physiology
Course Code	BMET 3001
Prerequisite	
Corequisite	
Antirequisite	
	L T P C

Course Objectives:

Students will understand about the structure and functions of the organ-systems of our own body.

Course Outcomes:

After completion of this course work students able to

CO1	Understand the Circulatory and Lymphatic System
CO2	Understand the Endocrine system & Sensory system
CO3	Understand the Respiratory system
CO4	Understand the Musculo-skeletal System & Urinary system
CO5	Understand about the Nervous system
CO6	Analyse the Digestive system

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Course Contents

Unit-1: Circulatory and Lymphatic System	7 hours			
Anatomy of the heart and the blood vessels. Heartposition and function. Origin of the heart beat				
	and electrical activity of the heart. Arteries, capillaries and veins- structure and function. Cardiac			
and peripheral circulation. Blood pressure and its regulation. Blood flow and its regulat	ion.			
Circulatory shock. Lymph and dynamics of lymph flow. Blood composition and function	n. Structure			
and function of red blood cells, white blood cells and platelets. Blood transfusion. Hem	and function of red blood cells, white blood cells and platelets. Blood transfusion. Hemostasis.			
Unit-2: Endocrine system & Sensory system	7 hours			
Endocrinology: Endocrine glands: Pituitary gland and hormone, thyroid gland and its hormone,				
adrenal gland and its hormone function, basic mechanism of hormone action, hormones and				
diseases. Sensory system: Functional anatomy of eye, ear and nose. Skin				
Unit-3: Respiratory system	7 hours			
Anatomical parts of the system and function. Mechanics of respiration. Lung volumes and				
capacities. Gas transport between the lungs and tissues. Regulation of respiration. Resp	oiratory			
adjustments in health and diseases;				
Unit-4: Musculo-skeletal System & Urinary system	7 hours			
Different types of muscles and their characteristics. Neuro-muscular transmission. Stru				
bone. General description of joints and structure. Disorders of: neuromuscular apparatus and joints;				

Various parts, structure and functions of the kidney and urinary tract. Physiology of urine formation and acid base balance. Diseases of the urinary system with reference to drugs used Unit-5: Nervous system

7 hours

5

Functions of different parts of brain and spinal card. Neurohumoral transmission in the central nervous system, reflex action, electroencephalogram, specialized functions of the brain, cranial nerves and their functions; Physiology and functions of the autonomic nervous system. Mechanism of Neurohumoral transmission in ANS

Unit-6: Digestive system

hours

Different parts of the digestive system. Structure and function of these organs. Digestion of proteins, carbohydrates, fats. Basic mechanism of gastrointestinal absorption of nutrients.

Suggested Readings:

- 1. Text Book of Medical Physiology, Guyton & Hall, W.B. Saunders company. Hardcourt India Private Limited
- 2. Ganongs Review of Medical Physiology. K E Barrett, S M Barman, S Boitano, H L Brooks, Tata McGraw Hill Education Private Limited.
- 3. Vander's Human Physiology: The Mechanisms of Body Function. Eric P. Widmaier, Hershel Raff, Kevin T. Strang. McGraw Hill
- 4. Ross and Wilson Anatomy and Physiology in Health and Illness by Anne Waugh, Elsevier

Name of The Course	Medical Instrumentation-I
Course Code	BMET 3002
Prerequisite	
Corequisite	
Antirequisite	
	L T P C
	3 0 0 3

Course Objectives:

Students will understand about the Medical Instrumentations

Course Outcomes:

After completion of this course work students able to

CO1	Understand the Bio Potential Electrodes
CO2	Understand the Electrode Configurations
CO3	Understand the Bio Amplifier
CO4	Understand the Measurement of Non-Electrical Parameter
CO5	Understand about the Bio-Chemical Measurement
CO6	Analyze the Cardiac pacemakers & defibrillators
Conting	Assessment Dattern

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
20	30	50	100

Course Contents

Unit-1: Bio Potential Electrodes	7 hours
Origin of bio potential and its propagation. Electrode-electrolyte interface, electrode-Sk	in interface,
half cell potential, impedance, polarization effects of electrode -nonpolarizable electrode	des. Types
of electrodes - surface, needle and micro electrodes and their equivalent circuits. Recon	ding
problems - measurement with two electrodes.	
Unit-2: Electrode Configurations	7 hours
Biosignals characteristics – frequency and amplitude ranges. ECG – Einthoven's triang	gle, standard
12 lead system. EEG – 10-20 electrode system, unipolar, bipolar and average mode. EN	AG, ERG
and EOG – unipolar and bipolar mode.	
Unit-3: Bio Amplifier	7 hours
Need for bio-amplifier - single ended bio-amplifier, differential bio-amplifier - right leg	g driven
ECG amplifier. Band pass filtering, isolation amplifiers – transformer and optical isolation	tion -
isolated DC amplifier and AC carrier amplifier. Chopper amplifier. Power line interfere	ence.
Unit-4: Measurement of Non-Electrical Parameter	7 hours
Temperature, respiration rate and pulse rate measurements. Blood Pressure: indirect m	
auscultatory method, oscillometric method, direct methods: electronic manometer, Pre	
amplifiers - systolic, diastolic, mean detector circuit. Blood flow and cardiac output me	
Indicator dilution, thermal dilution and dye dilution method, Electromagnetic and ultras	sound blood
flow measurement.	
Unit-5: Bio-Chemical Measurement	7 hours
Biochemical sensors - pH, pO2 and pCo2, Ion selective Field effect Transistor (ISFET)	
Immunologically sensitive FET (IMFET), Blood glucose sensors - Blood gas analyzers	
colorimeter, flame photometer, spectrophotometer, blood cell counter, auto analyser (s	simplified
schematic description).	
Unit-6: Cardiac pacemakers & defibrillators	5 hours
Cardiac pacemakers:Classification -External and internal (implantable) pacemakers,Sy	
and asynchronouspacemakers, programmable pacemakers, power sources, Pacing system	
Cardiac defibrillators: Classification-AC and DC defibrillators, Biphasic and Monophas	ic, Basic
principles and comparison of output waveforms of different DC defibrillators, Energy	
requirements,Synchronous, manual and asynchronous operation, implantable defibrilla	ators,
defibrillatoranalyzers, AED.	

Suggested Readings:

1. John G. Webster, "Medical Instrumentation Application and Design", John Wiley and sons, New York, 2004

2. Joseph J. Carr and John M. Brown, "Introduction to Biomedical Equipment Technology", Pearson Education, 2004.

3. Leslie Cromwell, "Biomedical Instrumentation and measurement", Prentice hall of India, New Delhi, 2007.

4. Khandpur R.S, "Handbook of Biomedical Instrumentation", Tata McGraw-Hill, New Delhi, 2003.

5. Standard Handbook of Biomedical Engineering & Design – Myer Kutz, McGrawHill Publisher, 2003.

Name of The Course	Analog and digital electronics				
Course Code	BMET 3003				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

Students will understand about the Analog and digital electronics

Course Outcomes:

After completion of this course work students able to

CO1	Understand the Large Signal Amplifiers
CO2	Understand the Multistage Amplifiers
CO3	Understand the Introduction to IC
CO4	Understand the Sequential Circuits
CO5	Understand about the D/A and A/D Converters

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
20	30	50	100

Couse Contents

Unit-1: Large Signal Amplifiers	7 hours			
Class A direct coupled with resistive load, Transformer coupled with resistive load, design theory,				
power amplifier design, harmonic distortion, power output, variation of output power	with load,			
thermal runaway, output transformer saturation, push-pull amplifiers, operation of cla	ss-A push-			
pull amplifier, class-B push-pull amplifier, crossover distortion, class AB push-pull am	•			
transistor phase inverter, conversion efficiency of class B amplifiers, design of Class-B	push-pull			
amplifier, complementary symmetry amplifier.				
Unit-2: Multistage Amplifiers	7 hours			
Coupling of transistor amplifiers, frequency response of coupled amplifiers, cascading	Coupling of transistor amplifiers, frequency response of coupled amplifiers, cascading of			
RC coupled amplifiers and their analysis. Tuned Amplifiers: single tuned, double tuned				
and stagger tuned amplifiers and their analysis. Types of feedback, effect of negative feedback on				
gain, bandwidth, stability, distortion and frequency response etc. Voltage series, current series,				
voltage shunt, current shunt feedback circuits and their analysis				
Unit-3: Introduction to IC	7 hours			
Advantages of IC's, General classification of IC's (Linear/Digital IC's, Monolithic/				
Hybrid IC's), Basic IC fabrication step	_			
Unit-4: Sequential Circuits	7 hours			
Introduction, flip flop SR, JK, D, T edge triggered and decked flip-flop, Registers. Type				
of Registers, circuit diagram, timing wave form and operation counters, counter design	1			
with state equation and state diagrams				
Unit-5: D/A Converters	7 hours			

Introduction, Weighted register D/A converter, binary ladder D/A converter, steady state accuracy test, D/A accuracy and resolution, Voltage of frequency conversion, Voltage of time conversion. Analog multiplexes and demultiplexes

5

Unit-6: A/D Converters

hours

Parallel A/D converter, Counter type A/D converter Successive approximation A/D converter. Single and dual slope A/D converter A/D accuracy and resolution

Suggested Readings:

- 1. Millman and Halkias : Electronic Devices & Circuits, TMH.
- 2. Boylestad : Electronic Devices & Circuits Theory, PH.
- 3. Allen Mottorshead : Electronic Devices & Circuits, PHI.
- 4. Malvino : Digital principle and applications, TMH.
- 5. R.P.Jain : Modern digital electronics, PIH.
- 6. Malvino : Digital electronics principle, THM

Name of The Course	Engineering mathematics		
Course Code	BMET 3004		
Prerequisite			
Corequisite			
Antirequisite			
	L 7	P	С
	3 0	0	3

Course Objectives:

Students will understand about the coordinate geometry, derivatives, integration, differentiation and differential calculus.

Course Outcomes:

After completion of this course work students able to

CO1	Understand the concept of Coordinate Geometry
CO2	Understand the concept of derivatives on rate of change, functions and variables
CO3	Understand the concept of integration on Curves, Volumes and length
CO4	Understand the concept of differentiation and apply for finding the solution of differential
	equations.
CO5	Understand about the differential calculus on Kinematics, rate of change, and optimization.
CO6	Analyze the concept of Differentiation rule

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
20	30	50	100

Course contents

Unit-1: Coordinate Geometry	7 hours			
Conic Sections: Sections of a cone: circle, ellipse, parabola, hyperbola and pair of intersecting				
lines. Standard equations and simple properties of parabola, ellipse and hyperbola. Standard				
equation of a circle, with numerical examples				
Unit-2: Applications of Derivatives	7 hours			
Applications of derivatives: rate of change, increasing/decreasing functions, tangent	s &normals,			
approximation and errors, maxima and minima of one variable. Simple problems (that ill	ustrate basic			
principles and understanding of the subject as well as real-life situations).				
Unit-3: Application of integration	7 hours			
Areas Between Curves, Volumes, Volumes by Cylindrical Shells, Arc Length				
Unit-4: Differential equation 7 hours				
Definition, order and degree, general and particular solutions of a differential equation. Formation				
of differential equation whose general solution is given. Solution of differential equations by				
method of separation of variables, homogeneous differential equations of first order, and	nd first			
degree. Solutions of linear differential equation of the type: , where p and q are function	ns of x. q py			
dx dy				
Unit-5: application of differential calculus	7 hours			
Kinematics, rate of change, optimization.				
Unit-6: Differentiation rule	5 hours			
The Limit of a Function, Calculating Limits Using the Limit Laws, The Precise Definition of a Limit,				
Continuity, Derivatives of Polynomials and Exponential Functions, The Product and Quotient Rules,				
Derivatives of Trigonometric Functions, Chain rule, Differentiation of implicit & explicit function,				
Derivatives of Logarithmic Functions. Roll's and Lagrange's mean value theorem.				

Suggested Readings:

1) Oldham K, Spanier J. The fractional calculus theory and applications of differentiation and integration to arbitrary order. Elsevier; 1974 Sep 5.

2) Eisenhart LP. Coordinate geometry. Courier Corporation; 2005 Mar 4.

3) Grewal BS. Higher engineering mathematics. 2002, Khanna Publishers, New Delhi. 1996.

Name of The Course	Biomedical Circuits and Networks				
Course Code	BMET 3005				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

Students will understand about the Biomedical Circuits and Networks

Course Outcomes:

After completion of this course work students able to

CO1	Understand the Resonant & Coupled Circuits
CO2	Understand the Mesh Current & Node Voltage Network Analysis
CO3	Understand the Network Theorems

CO4	Understand the Circuit Transients
CO5	Understand about the Laplace Transform
CO6	Analyse the Graph of Network

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Course Contents:

Unit-1: Resonant & Coupled Circuits 7 hours				
Resonant Circuits: Series and Parallel Resonance, Impedance and Admittance Characteristics,				
Quality Factor, Half-Power Points, Bandwidth, Resonant voltage rise, Transform diagrams,				
Solution of Problems; Coupled Circuits: Magnetic Coupling, polarity of coils, polarity of induced				
voltage, concept of self and mutual inductance, coefficient of coupling, Solution of Problems				
Unit-2: Mesh Current & Node Voltage Network Analysis7 hours				
Mesh Current Network Analysis: Kirchoff's Voltage Law, Formulation of Mesh Equations,				
Solution of mesh equations by Cramer's rule and matrix method, Driving point impedance,				
Transfer impedance, Solutions of Problems with DC and AC sources; Node Voltage Network				
Analysis: Kirchoff's Current Law, Formulation of node equations and solutions, Driving point				
admittance, Transfer admittance, Solutions of Problems with DC and AC sources				
Unit-3: Network Theorems 7 hours				
Network Theorems: Definition and implications of Superposition Theorem, Thevenin's Theorem,				
Norton's Theorem, Reciprocity Theorem, Compensation Theorem, Maximum Power Transfer				
Theorem, Millman's Theorem, Star-Delta transformations, Solutions and Problems with DC and				
AC sources; SPICE: Introduction, model statement, elementary DC and small-signal analysis				
Unit-4: Circuit Transients 7 hours				
Circuit Transients: DC Transient in R-L & R-C circuits with and without initial charge, R-L-C				
circuits, AC transients in sinusoidal R-L, R-C, & R-L-C circuits, solution of problems				
Unit-5: Laplace Transform 7 hours				
Laplace Transform: Concept of complex frequency, transformation of f(t) into F(s), transformation				
of step, exponential, overdamped surge, critically damped surge, damped sine, undamped sine				
functions, properties of Laplace Transform, linearity, real-differentiation, realintegration, Initial				
Value Theorem and Final Value Theorem, Inverse Laplace Transform, applications in circuit				
analysis, Partial Fractions expansion, Heaviside's Expansion Theorem, solution of problems				
Unit-6: Graph of Network				
hours				
Graph of Network: Concept of Tree Branch, Tree link, junctions, Incident matrix, Tie-set matrix,				
Cut-set matrix, determination of loop current and node voltages.				

Suggested Readings:

1. A.B.Carlson-Circuits- Cenage Learning

2. John Bird- Electrical Circuit Theory and Technology- 3/e- Elsevier (Indian Reprint)

3. Skilling H.H.: "Electrical Engineering Circuits", John Wiley & Sons.

4. Edminister J.A.: "Theory & Problems of Electric Circuits", McGraw-Hill Co.

5. Kuo F. F., "Network Analysis & Synthesis", John Wiley & Sons.

6. R.A.DeCarlo & P.M.Lin- Linear Circuit Analysis- Oxford 7. P.Ramesh Babu- Electrical Circuit Analysis- Scitech

Elective-I

Name of The Course	Electronic Measurement and Instrumentation for B Applications	iome	dica	1	
Course Code	BMET 3007				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

Students will understand about the basics of sensors and transducers, by which the students can able to know the use and the type of sensors/transducer with other signal conditioning circuit for various biomedical applications.

Course Outcomes:

After completion of this course work students able to

CO1	Understand the Basic concept of measurement system
CO2	Explain the Introduction to instrumentation system
CO3	Understand the Principles of transduction
CO4	Understand the Signal Conditional Circuit
CO5	Understand the Indicating and recording instruments
CO6	Analyse the Introduction of Power electronics devices:

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
20	30	50	100

Course Contents:

Unit-1: Basic concept of measurement system	7 hours		
Basic concept of measurement system, role of noise and errors in measurement, static			
characteristics of measuring devices - accuracy, precision, sensitivity, resolution, hysterisis, loading			
effect etc.			
Unit-2: Introduction to instrumentation system	5 hours		
Introduction to instrumentation system, performance characteristics of instrumentation system –			
system order, specification and testing of dynamic response. Concept of control system,			
classification, block diagram representation of physical system.			
Unit-3: Principles of transduction	7 hours		
Principles of transduction, Resistive Transducers Strain Gauge- types, construction, selection			
materials, Gauge factor, Bridge circuit, Temperature compensation. Strain Gauge type Blood			
pressure transducers. Thermo resistive transducer, Pressure transducers – diaphragms, thin film,			
piezoelectric, force balanced pressure meter. Flow transducers.			

Unit-4: Signal Conditional Circuit			
Types of filters, frequency transformation, realization of practical filters and its biomedical application.			
Unit-5: Indicating and recording instruments	7 hours		
Introduction, digital voltmeters (DVM's), galvanometric recorders, servo type potentiometric			
recorders, thermal, inkjet, laser recorders, magnetic tape recorders, digital recorder of me	emory type.		
Unit-6: Introduction of Power electronics devices:	7 hours		
Thyristor characteristic and its application as rectifier, as inverter, chopper and cyclo-converters.			
Other power transistor and IBGT.			

Suggested Readings:

- 1. Doebelin, Ernest. System dynamics: modeling, analysis, simulation, design. CRC Press, 1998
- 2. Nakra, B. C., and K. K. Chaudhry. *Instrumentation, measurement and analysis*. Tata McGraw-Hill Education, 2003
- 3. Helfrick, Albert D., and William David Cooper. *Modern electronic instrumentation and measurement techniques*. Prentice Hall, 1990
- 4. Kalsi, H. S. Electronic Instrumentation, 3e. Tata McGraw-Hill Education, 2010

Name of The Course	Introduction to Biotechnology				
Course Code	BMET 3008				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

The students will be familiarized with Genetics, Molecular Biology, Biotechnology and Immunology.

Course Outcomes

On completion of this course the students will be able to understand

CO1	Genetic of Inheritance, interaction between traits and quantitative inheritance
CO2	Molecular Biology, transcription, translation. Mutation and mutagenesis
CO3	Genetic Engineering, vectors & enzymes used in recombinant technology
CO4	Understanding the immunology and vaccine production
CO5	Analyze the red and white biotechnology application
CO6	Analyze the yellow and green biotechnology application

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Tes	t Total Marks
		(ETE)	
20	30	50	100

Course Content:

Unit-1: Genetics	7 hours
Genetics of Inheritance - Laws of inheritance, recombination and segregation of tra	its, segregation
ratio, interaction between traits and quantitative inheritance	
Unit-2: Molecular Biology	7 hours
Molecular Biology - The genetic material. RNA as genetic material, fidelity of DI	NA replication,
transcription, translation. Mutation and mutagenesis.	_
Unit-3: Genetic Engineering	7 hours
Genetic Engineering - Essentials of gene manipulation, vectors & enzymes used	in recombinant
technology.	
Unit-4 : Immunology	7 hours
Unit-4 : Immunology	nmune system;
Unit-4 : Immunology Active, passive, Humoral and Cellular immunity; Clonal selection theory, Cells of in	nmune system;
Unit-4 : Immunology Active, passive, Humoral and Cellular immunity; Clonal selection theory, Cells of ir Immunoglobulins, Haptens, Antigens and Immunogens; Monoclonal antibodies; va	mmune system; accine 7 hours
Unit-4 : Immunology Active, passive, Humoral and Cellular immunity; Clonal selection theory, Cells of in Immunoglobulins, Haptens, Antigens and Immunogens; Monoclonal antibodies; va Unit-5: Application of Biotechnology-I	mmune system; accine 7 hours
Unit-4 : Immunology Active, passive, Humoral and Cellular immunity; Clonal selection theory, Cells of in Immunoglobulins, Haptens, Antigens and Immunogens; Monoclonal antibodies; va Unit-5: Application of Biotechnology-I Red biotechnology (Medicine & human health); White biotechnology (Industrial pro-	mmune system; accine 7 hours
Unit-4 : Immunology Active, passive, Humoral and Cellular immunity; Clonal selection theory, Cells of in Immunoglobulins, Haptens, Antigens and Immunogens; Monoclonal antibodies; va Unit-5: Application of Biotechnology-I Red biotechnology (Medicine & human health); White biotechnology (Industrial pro microorganisms)	nmune system; accine 7 hours ocess involving 5 hours
Unit-4 : Immunology Active, passive, Humoral and Cellular immunity; Clonal selection theory, Cells of in Immunoglobulins, Haptens, Antigens and Immunogens; Monoclonal antibodies; va Unit-5: Application of Biotechnology-I Red biotechnology (Medicine & human health); White biotechnology (Industrial pro microorganisms) Unit-6: Application of Biotechnology-II	nmune system; accine 7 hours ocess involving 5 hours

Suggested Readings:

- 1. Elements of Genetics; Phundan singh
- 2. Genetics: B D Singh
- 3. A textbook of molecular biology: 3rd edition: Mohan p arora and Himanshu Arora
- 4. Basic Biotechnology: B D Singh
- 5. Basic and Clinical Immunology: Mark Peakman and Diego Vergani

Semester IV

Name of The Course	Biomedical Control Systems				
Course Code	BMET 4001				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

Students will understand about the Biomedical Control Systems

Course Outcomes:

After completion of this course work students able to

CO1	Understand the Introduction to Physiological control systems
CO2	Understand the Cardiovascular system Modelling and simulation
CO3	Understand the Pulmonary mechanics modeling and simulation
CO4	Understand the Eye movement system and its mathematical model
CO5	Understand about the Simple models of muscle stretch reflex action
CO6	Analyze the Applications of Control theory to physiological systems

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Course Contents

Unit-1: Introduction to Physiological control systems	7 hours	
Introduction to Physiological control systems, Illustration, Example of a physiological control		
system, Difference between engineering and physiological control system, Art of modeling		
Physiological systems, Linear models of physiological systems, Distributed parameters	versus	
lumped parameter models, Principle of superposition.		
Unit-2: Cardiovascular system Modelling and simulation	7 hours	
Cardiovascular system_ Modelling and simulation, Theoretical basis, Model development, Heart		
model, circulatory model		
Unit-3: Pulmonary mechanics modeling and simulation 7 hours		
Pulmonary mechanics modeling and simulation, Theoretical basis, Model development, Lung tissue		
visco-elastance, chest wall, airways, Full model of respiratory mechanics, Interaction of Pulmonary		
and Cardiovascular models; Study of frequency domain analysis of linearized model of lungs		
mechanics,		

Unit-4: Eye movement system and its mathematical model	7 hours	
Eye movement system and its mathematical model, oculomotor muscle model, linear muscle		
model.		
Unit-5: Simple models of muscle stretch reflex action	7 hours	
Simple models of muscle stretch reflex action, Ventilator control action, Lung mechanic	s and their	
SIMULINK implementation, Study of steady state analysis of muscle stretch reflex action,		
ventilatory control action by MATLAB tools, Study of transient response analysis of		
neuromuscular reflex model action by MATLAB tools, Circulatory control model and g	lucose	
insulin regulation model by MATLAB tools		
Unit-6: Applications of Control theory to physiological systems 5 hours		
Applications of Control theory to physiological systems. Time-domain, frequency domai	n, stability	
analysis. Biological performance criteria and adaptive control systems.	-	

Suggested Readings:

1. "Physiological control systems: Analysis, Simulation and Estimation", Khoo Michael C.K., Prentice Hall of India Pvt, Ltd, New Delhi

2 "Virtual Bioinstrumentation Biomedical, Clinical and Healthcare applications", .Olansen Jon B. and Eric Rosow, Prentice Hall PTR, Upper Saddle River, Nj.

3. "Biological Control System analysis", Milsum John H., McGraw Hill, 1966.

Name of The Course	Medical Instrumentation-II				
Course Code	BMET 4002				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

Students will understand about the Measurement and Recording of Noninvasive Diagnostic Instrumentation, Basic measuring instruments, Patient monitoring system, Biotelemetry & Respiratory Equipments.

Course Outcomes:

After completion of this course work students able to

CO1	Understand the Measurement and Recording of Noninvasive Diagnostic Instrumentation
CO2	Understand the Basic measuring instruments
CO3	Understand the Patient monitoring system
CO4	Understand the Biotelemetry
CO5	Understand about the Audiometers
CO6	Analyse the Respiratory Equipments

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
20	30	50	100

Course Contents

Unit-1: Measurement and Recording of Noninvasive Diagnostic Instrumentation	7 hours			
Measurement and Recording of Noninvasive Diagnostic Instrumentation, Patient Care and				
Electrical Safety: Principle of ultrasonic measurement, ultrasonic, thermography, elem	nents of			
intensive care monitoring, X-ray, CT – Scan and MRI, tonometer, dialysis, diathermy,	Shock			
hazards from electrical equipment.				
Unit-2: Basic measuring instruments	7 hours			
Multimeters – analog and digital multimeters. Frequency and time measurement – anal	og CRO and			
digital storage oscilloscope. Medical display systems - single and multichannel display	ys, nonfade			
displays, LED and LCD displays.				
Unit-3: Patient monitoring system	7 hours			
Patient monitoring system-Bed-side monitors, Central station monitors, Computerized arrhythmia				
monitors, Cardio scope, Ambulatory monitors, Neonatal monitors, Holter monitoring,	Infant			
Warmer, Neonatal Incubator, Infusion pump, syringe pump, Cardiotocograph – Metho	ds of			
monitoring fetal heart rate				
Unit-4: Biotelemetry	7 hours			
Biotelemetry – Principles – Types – Single channel and Multichannel – Frequency division and				
Time division multiplexing, Telestimulation, Telemedicine – Principles and applicatio	ns			
Unit-5: Audiometers	7 hours			
Audiometers –Pure tone, Speech and Mask audiometers, Bekesy audiometers, Tympar	nometers.			
Hearing aids, Cochlear implants, Ear moulds. Densitometers - Principle and application	ons.			
Unit-6: Respiratory Equipments	5 hours			
Respiratory Equipments: Ventilators–Generations–Parameters-Modes of operationsPressure, Flow,				
volume, cycling, Ventilator terms – ventilator types– Jet ventilators, Humidifier, Nebulizer,				
Spirometry, Nitric Oxide Therapy, PFT, Plethysmography, Oxymetry - Transmission and Reflection				
Oxymetry, Fingertip Pulse Oxymeter.				

Suggested Readings:

1. "Principles of Applied Biomedical Instrumentation", L.A.Geddes & L.E.Baker, Wiley India Pvt.Ltd, Third Edition, 1989.

2. "Handbook of Biomedical Instrumentation", R.S. Khandpur, Second Edition, Tata McGraw Hill, 2003.

3. "Biomedical Instrumentation", Shakthi Chatterjee& Aubert Miller, CENGAGE Learning, 2010.

4. "Handbook of Biomedical Instrumentation", Chanderlekha Goswami, Manglam Publications,

2010.

5. "Medical Instrumentation: Application and Design", John G. Webster, Wiley India Pvt.Ltd, Third Edition, 2002.

6. "CRC Handbook of Clinical Engineering", B. N. Feinberg, CRC Press, 1980.

7. "The Biomedical Engineering Handbook", Joseph D. Bronzino, CRC Press, 1995.

Name of The Course	Biomaterials and Artificial Organs				
Course Code	BMET 4003				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

Students will understand about the Biomaterials and Artificial Organs

Course Outcomes:

After completion of this course work students able to

CO1	Understand the basic concept of biomaterials
CO2	Understand the Biocompatibility & toxicological screening of biomaterials
CO3	Understand the implant materials
CO4	Understand the Orthopaedic Implants & Prosthetic Devices
CO5	Understand about the Cardiovascular Implants and Extracorporeal Devices
CO6	Analyze the Sensory Devices & artificial skins functions

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Course Contents

Unit-1: Introduction to biomaterials	7 hours		
Introduction: Definition of biomaterials, requirements of biomaterials, classification of			
biomaterials, Comparison of properties of some common biomaterials. Effects of physic	ological		
fluid on the properties of biomaterials. Biological responses (extra and intra-vascular s	ystem).		
Surface properties of materials, physical properties of materials, mechanical properties			
Unit-2: Biocompatibility & toxicological screening of biomaterials	7 hours		
Definition of biocompatibility, blood compatibility and tissue compatibility. Toxicity tests: acute			
and chronic toxicity studies (in situ implantation, tissue culture, haemolysis, thrombogenic potential			
test, systemic toxicity, intracutaneous irritation test), sensitization, carcinogenicity, mutagenicity			
and special tests.			
Unit-3: implant materials	7 hours		
Polymeric implant materials, Ceramic implant materials, Composite implant materials, Metallic			
implant materials			

Unit-4: Orthopaedic Implants & Prosthetic Devices	7 hours	
Alveolar bone replacements. Orthopedic implants – types of orthopedic function devices,		
permanent joint replacements, hip joint, bone cement, Artificial limbs, hand and foot, dental		
prosthesis		
Unit-5: Cardiovascular Implants and Extracorporeal Devices	7 hours	
Blood clotting, Blood Rheology, Heart, Aorta, Valves, Lungs, Vascular Implants, Cardiac		
Pacemaker, Blood Substitutes, Kidney Function. Artificial kidney, Artificial heart-lung machine		
Unit-6: Sensory Devices & artificial skins	5 hours	
Intraocular Lens and hearing aids, artificial skins		

Suggested Readings:

1. "Biomedical Engineering Principles, An Introduction to fluid , heat and mass transfer process", Cooney D. O., Marcel Dekker Inc, (1976).

2. "Transport Phenomena is living systems- Biomedical Aspects of Momentum and Man Transport", Lightfoot E. N., John Wiley (1974).

3 "Basic transport phenomena in biomedical engineering", Fournier, Ronald L., Taylor & Francis, 1998.

Name of The Course	Medical Informatics	
Course Code	BMET 4004	
Prerequisite		
Corequisite		
Antirequisite		
	L T P C	С
		3

Course Objectives:

Students will understand about the Medical Informatics

Course Outcomes:

After completion of this course work students able to

CO1	Understand the basic concept of Medical Informatics
CO2	Understand the Computerised Patient Record
CO3	Understand the Computers in Clinical Laboratory and Medical Imaging
CO4	Understand the Computer Assisted Medical Decision-Making
CO5	Understand about the Recent Trends In Medical Informatics
CO6	Analyze the Databases And Computer Network

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	

20	30	50	100

Course Contents

Unit-1: Introduction to Medical Informatics	7 hours				
Introduction - Structure of Medical Informatics –Internet and Medicine -Security issu					
Computer based medical information retrieval, Hospital management and informationSystem,					
Functional capabilities of a computerized HIS, E-health services, HealthInformatics –					
Informatics, Bioinformatics					
Unit-2: Computerised Patient Record	7 hours				
Introduction - History taking by computer, Dialogue with the computer, Components	and				
functionality of CPR, Development tools, Intranet, CPR in Radiology- Application					
serverprovider, Clinical information system, computerized prescriptions for patients					
Unit-3: Computers in Clinical Laboratory and Medical Imaging	7 hours				
Automated clinical laboratories-Automated methods in hematology, cytology andhisto	ology,				
Intelligent Laboratory Information System - Computerized ECG, EEG and EMG, Con	Intelligent Laboratory Information System - Computerized ECG, EEG and EMG, Computer				
assisted medical imaging- nuclear medicine					
Unit-4: Computer Assisted Medical Decision-Making	7 hours				
Neuro computers and Artificial Neural Networks application, Expert system –General model of					
CMD, Computer –assisted decision support system-production rule system cognitive model,					
semester networks, decisions analysis in clinical medicine-computers in the care of critically					
patients-computer assisted surgery-designing	-				
Unit-5: Recent Trends In Medical Informatics	7 hours				
irtual reality applications in medicine, Computer assisted surgery, Surgical simulation,					
Telemedicine - Tele surgery computer aids for the handicapped, computer assisted Instr					
in Medical Informatics - Computer assisted patient education and health Medical educ	cation and				
health care information					
Unit-6: Databases And Computer Network	5 hours				
Basics of databases- Relational, distributed and other types of databases, Integrity and					
security of databases, DBMS. Popular databases available in medical related application	ns.				
Basics of Computer networks- types and topologies.					

Suggested Readings:

1. R.D.Lele "Computers in medicine progress in medical informatics", Tata McGraw Hill Publishing computers Ltd, 2005, New Delhi.

2. Mohan Bansal, "*Medical informatics*" Tata McGraw Hill Publishing computers Ltd, 2003 New Delhi.

Name of The Course	Data structure using C				
Course Code	BMET 4005				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

Students will understand about the Data structure using C

Course Outcomes:

After completion of this course work students able to

CO1	Understand the Data structure Introduction
CO2	Understand the Stacks &, Operations on Queue
CO3	Understand the Tree Traversal algorithms
CO4	Understand the Graphs & algorithm
CO5	Understand about the Searching & Sorting
CO6	Analyze the Search Trees

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
20	30	50	100

Course Contents

Unit-1: Data structure Introduction	7 hours	
Introduction: Basic Terminology, Elementary Data Organization, Algorithm, Efficiency of an		
Algorithm, Time and Space Complexity, Asymptotic notations: Big-Oh, Time-Space trade-off.		
Abstract Data Types (ADT) Arrays: Definition, Single and Multidimensional Arrays,		
Representation of Arrays: Row Major Order, and Column Major Order, Application of	arrays,	
Sparse Matrices and their representations. Linked lists: Array Implementation and Dynamic		
Implementation of Singly Linked Lists, Doubly Linked List, Circularly Linked List, Operations on		
a Linked List. Insertion, Deletion, Traversal, Polynomial Representation and Addition, Generalized		
Linked List .		
Unit-2: Stacks & , Operations on Queue	7 hours	
Stacks: Abstract Data Type, Primitive Stack operations: Push & Pop, Array and Linked		
Implementation of Stack in C, Application of stack: Prefix and Postfix Expressions, Evaluation of		
postfix expression, Recursion, Tower of Hanoi Problem, Simulating Recursion, Principles of		
recursion, Tail recursion, Removal of recursion Queues, Operations on Queue: Create, J	Add, Delete,	

Full and Empty, Circular gueues, Array and linked implementation of gueues in C, Dequeue and Priority Queue. Unit-3: Tree Traversal algorithms 7 hours Trees: Basic terminology, Binary Trees, Binary Tree Representation: Array Representation and Dynamic Representation, Complete Binary Tree, Algebraic Expressions, Extended Binary Trees, Array and Linked Representation of Binary trees. Tree Traversal algorithms: Inorder, Preorder and Postorder, Threaded Binary trees, Traversing Threaded Binary trees, Huffman algorithm. Unit-4: Graphs & algorithm 7 hours Graphs: Terminology, Sequential and linked Representations of Graphs: Adjacency Matrices, Adjacency List, Adjacency Multi list, Graph Traversal : Depth First Search and Breadth First Search, Connected Component, Spanning Trees, Minimum Cost Spanning Trees: Prims and Kruskal algorithm. Transistive Closure and Shortest Path algorithm: Warshal Algorithm and Dijikstra Algorithm, Introduction to Activity Networks Unit-5: Searching & Sorting 7 hours Searching : Sequential search, Binary Search, Comparison and Analysis Internal Sorting: Insertion Sort, Selection, Bubble Sort, Quick Sort, Two Way Merge Sort, Heap Sort, Radix Sort, Practical consideration for Internal Sorting. Unit-6: Search Trees 5 hours Search Trees: Binary Search Trees(BST), Insertion and Deletion in BST, Complexity of Search Algorithm, AVL trees, Introduction to m-way Search Trees, B Trees & B+ Trees . Hashing: Hash Function, Collision Resolution Strategies Storage Management: Garbage Collection and Compaction.

Suggested Readings:

1. Aaron M. Tenenbaum, Yedidyah Langsam and Moshe J. Augenstein "Data Structures Using C and C++", PHI Learning Private Limited, Delhi India

2. Horowitz and Sahani, "Fundamentals of Data Structures", Galgotia Publications Pvt Ltd Delhi India.

3. A.K. Sharma ,Data Structure Using C, Pearson Education India.

4. Rajesh K. Shukla, "Data Structure Using C and C++" Wiley Dreamtech Publication.

5. Lipschutz, "Data Structures" Schaum's Outline Series, Tata Mcgraw-hill Education (India) Pvt. Ltd

6. Michael T. Goodrich, Roberto Tamassia, David M. Mount "Data Structures and Algorithms in C++", Wiley India

Elective-II

Name of The Course	Biomechanics				
Course Code	BMET 4006				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

Students will understand about the Biomechanics

Course Outcomes:

After completion of this course work students able to

CO1	Understand the Introduction to Fluid Mechanism
CO2	Understand the Flow Analysis of Velocity and Pressure Gradient
CO3	Understand the Flow Dynamical Study of Circulating System
CO4	Understand the Soft Tissue & Lungs Mechanics
CO5	Understand about the Orthopaedic Mechanics
CO6	Analyze the Cochlear Mechanics

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
20	30	50	100

Course Contents

Unit-1: Introduction to Fluid Mechanism	7 hours	
asic laws governing conservation of mass, Newton's Law, Hooke's Law, momentum and energy,		
laminar flow, Newtonian and Non-Newtonian Fluid, Viscoelastic fluid, Couette flow a	nd Hagen-	
Poiseville equation, turbulent flow.		
Unit-2: Flow Analysis of Velocity and Pressure Gradient	7 hours	
Arterial impedance relating pulse pressure and flow rate, mechanism and transport in		
microcirculation, microcirculatory flow, Transcapillary fluid movements in systemic		
circulation, physiological factors controlling blood pressure, Heart valves.		
Unit-3: Flow Dynamical Study of Circulating System	7 hours	
Heart and blood vessels, Ventricular pressure, volume, ECG time based cyclic variation.		
Determination of ventricular wall diastolic, systolic modules verses stress properties and		
their physiological connotation, Intra-ventricular blood		

Unit-4: Soft Tissue & Lungs Mechanics		
Pseudo-elasticity, Nonlinear stress- strain relationship, Structural and functional proper	ties of skin,	
ligaments and tendon, Muscle in terms of its elastic and contractile element parameter	rs; Lung	
structure and function, methods of determining lung pressure and volume, airway resi	stance and	
conductance		
Unit-5: Orthopaedic Mechanics	7 hours	
Mechanical properties of Cartilage, Diffusion properties of articular cartilage,		
Mechanical properties of bone, Kinetics and kinematics of joint, Lubrication of joints,		
Analysis of force in orthopaedic implants		
Unit-6: Cochlear Mechanics	5 hours	
Passive Models, Active Models, Vestibular Mechanics, Otolith Distributed Parameter		
model, Non-Dimensionalisation of the Motion Equation, Otolith Transfer Function and		
Frequency Response, Semicircular Canal Distributed Parameter model and its Frequency		
Response		

Suggested Readings:

- 1. Y.C. Fung : Biomechanics Circulation, Springer Verlag, 1997.
- 2. Susan J. Hall : Basic Biomechanics l, TMH, 2002.
- 3. Ozkay & Margareta Nordin: Fundamentals of Biomechanics, Springer Verlag, 1999.
- 4. Y.C. Fung :Biomechanics-Mechanical Properties of Living tissues, Springer Verlag, 1981

5. Dawson and Right :Introduction to biomechanics of joints and joint replacement, Mechanical Engg. Publication Ltd. 1989.

6. Jacob Kline :Handbook of Biomedical Engineering, Academic Press Inc. 1988

Name of The Course	Microprocessors and MicroControllers				
Course Code	BMET 4007				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

Students will understand about the Microprocessors and MicroControllers

Course Outcomes:

After completion of this course work students able to

CO1	Understand the 8086 Architecture
CO2	Understand the Instruction Set and Assembly Language Programming of 8086
CO3	Understand the I/O Interface & Communication Interface
CO4	Understand the Interfacing with advanced devices

CO5	Understand about the Introduction to Microcontrollers		
CO6	Analyze the The AVR RISC microcontroller architecture		
Continu	Continuous Assessment Pattern		

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Course Contents

	[
Unit-1: 8086 Architecture	7 hours			
Introduction to 8085 Microprocessor, 8086 Architecture-Functional diagram. Register				
Organization, Memory Segmentation. Programming Mode!. Memory addresses. Physic	cal memory			
organization. Architecture of 8086, signal descriptions of 8086- common function sign	nals.			
Minimum and Maximum mode signals. Timing diagrams. Interrupts of 8086.				
Unit-2: Instruction Set and Assembly Language Programming of 8086	7 hours			
Instruction formats, addressing modes, instruction set, assembler directives, macros, s	imple			
programs involving logical, branch and call instructions, sorting, evaluating arithmetic	expressions,			
string manipulations	-			
Unit-3: I/O Interface & Communication Interface	7 hours			
8255 PPI various modes of operation and interfacing to 8086. Interfacing keyboard, dis	splay,			
stepper motor interfacing, D/A and A/D converter; Serial communication standards, Serial data				
transfer schemes. 8251 USART architecture and interfacing. RS- 232. IEEE-4-88, Prot	otyping and			
trouble shooting				
Unit-4: Interfacing with advanced devices	7 hours			
Memory interfacing to 8086, Interrupt structure of 8086, Vector interrupt table, Interr	upt service			
routine. Introduction to DOS and BIOS interrupts, Interfacing Interrupt Controller 82.	59 DMA			
Controller 8257 to 8086.				
Unit-5: Introduction to Microcontrollers & 8051 Real Time Control	7 hours			
Overview of 8051 microcontroller. Architecture. I/O Ports. Memory organization, add	ressing			
modes and instruction set of 8051, simple program; Interrupts, timer/ Counter and ser	ial			
communication, programming Timer Interrupts, programming external hardware inter	rrupts,			
programming the serial communication interrupts, programming 8051 timers and cour				
Unit-6: The AVR RISC microcontroller architecture	5 hours			
Introduction, AVR Family architecture, Register File, The ALU. Memory access and I	nstruction			
execution. I/O memory. EEPROM. I/O ports. Timers. UART. Interrupt Structure				

Suggested Readings:

1. D. V. Hall. Micro processors and Interfacing, TMGH. 2'1 edition 2006.

2. Kenneth. J. Ayala. The 8051 microcontroller, 3rd edition, Cengage learning, 2010

Semester V

Name of The Course	Research Methodology & Biostatistics				
Course Code	BMET 5001				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives:

Students will get exposure about Research Methodology & Biostatistics

Course Outcomes:

After completion of this course work students able to

CO1	Understand about the basic concepts of Research
CO2	Understand about the Research Design
CO3	Understand about the Research Report and ethics
CO4	Understand about the Sampling methods
CO5	Understand about the Measures of central tendency
CO6	Understand about Hypothesis testing

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End	Term	Test	Total Marks
		(ETE)			
20	30	50			100

Course Content:

Unit-1: Introduction to Research	8 hours			
Research definition, types, advantage and significance. Introduction to research methods,				
identifying research problem, definition, objectives, role, scope in biotech research, pr	rocess of			
research, limitations & types				
Unit-2: Research Design	7 hours			
Concept of Interdisciplinary Research, Procedures in research. Types of Research	rch Design:			
Experimental/Interventional research, Quasi-experimental studies, Observational research. Sources				
of Experimental Errors. Survey research: Types of surveys- CATI, CAPI, Mail, Email, F	Face-to-face,			
Questionnaire				
Unit-3: Research Report and ethics	5 hours			
Type of research report- Research, review, case report, manuscript, monograph, boo	ok chapters.			
Structure of Research Reports. Quoting of reference and bibliography using reference in	nanagement			
tools. Ethical issues in research, plagiarism.				

Unit-4: Sampling methods	5 hours
Sampling methods, Advantages and Limitation, Sampling process, Types of Sampling,	Probability
and Non Probability sampling techniques, sampling errors, Data collection Primary and	d secondary
data, Collection and validation.	
Unit-5: Measures of central tendency	8 hours
Measures of central tendency- Mean, Median, Mode; Measures of dispersion- Range, Mea	an deviation
and Coefficient of variation, Standard deviation, Standard error; Correlation and	regression;
Statistical inference- Hypothesis testing, Significance level, Confidence interval, t-test,	z-test. Test
of significance for large and small samples; Parametric tests; Non parametric tests; Ez	xperimental
design, Use of biostatistic softwares.	
Unit-6: Hypothesis testing	7 hours
Null hypothesis and test of significance (t-test, paired t-test, Analysis of variance, A	Analysis of
covariance, Coefficient of Variation, chi-square test, Fischer exact, Mann-Whitney	, Wilcoxin,
McNeman test, Kruskal Wallis.	

Suggested Readings:

- 1. Graziano AM, Raulin ML. Research methods: A process of inquiry. HarperCollins College Publishers; 1993.
- 2. C.R. Kothari : Research Methodology, New Age International Publishers
- 3. Bouma GD, Ling R, Wilkinson L. The research process. Oxford: Oxford University Press; 1993 Mar 30.
- 4. Dawson B, Trapp RG. Basic and clinical biostatistics. Singapore. 2004;2001:141-2

Name of The Course	Medical signal & Image processing				
Course Code	BMET 5002				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

Students will understand about the Medical signal & Image processing

Course Outcomes:

After completion of this course work students able to

CO1	Understand the
CO2	Understand the Biomedical Signals
CO3	Understand the Fundamentals of Deterministic Signal Processing
CO4	Understand the Fundamentals of Deterministic Image Processing
CO5	Understand about the Probability and Random Signals
CO6	Analyze the Image Segmentation and Registration

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Course Contents

Unit-1: Biomedical Signals	7 hours			
ECG: Cardiac electrophysiology, relation of electrocardiogram (ECG) components to cardiac				
events, clinical applications. Speech Signals: The source-filter model of speech produc				
spectrographic analysis of speech. Speech Coding: Analysis-synthesis systems, channe	el vocoders,			
linear prediction of speech, linear prediction vocoders.				
Unit-2: Biomedical Image	7 hours			
Imaging Modalities: Survey of major modalities for medical imaging: ultrasound, X-ra	•			
PET, and SPECT. MRI: Physics and signal processing for magnetic resonance imaging	g. Surgical			
Applications: A survey of surgical applications of medical image processing.	•			
Unit-3: Fundamentals of Deterministic Signal Processing	7 hours			
Data Acquisition: Sampling in time, aliasing, interpolation, and quantization. Digital	Filtering:			
Difference equations, FIR and IIR filters, basic properties of discrete-time systems, con	volution.			
DTFT: The discrete-time Fourier transform and its properties. FIR filter design using w	vindows.			
DFT: The discrete Fourier transform and its properties, the fast Fourier transform (FFT	Γ), the			
overlap-save algorithm, digital filtering of continuous-time signals.				
Unit-4: Fundamentals of Deterministic Image Processing	7 hours			
Sampling Revisited: Sampling and aliasing in time and frequency, spectral analysis. Image				
processing I: Extension of filtering and Fourier methods to 2-D signals and systems. In	nage			
processing II: Interpolation, noise reduction methods, edge detection, homomorphic fi	ltering.			
Unit-5: Probability and Random Signals	7 hours			
PDFs: Introduction to random variables and probability density functions (PDFs). Class	sification:			
Bayes' rule, detection, statistical classification. Estimating PDFs: Practical techniques	for			
estimating PDFs from real data. Random signals I: Time averages, ensemble averages,				
autocorrelation functions, crosscorrelation functions. Random signals II: Random signa	ls and linear			
systems, power spectra, cross spectra, Wiener filters. Blind source separation: Use of p	rincipal			
component analysis (PCA) and independent component analysis (ICA) for filtering				
Unit-6: Image Segmentation and Registration	5 hours			
Image Segmentation: statistical classification, morphological operators, connected con	nponents.			
Image Registration I: Rigid and non-rigid transformations, objective functions.	-			
Image Registration II: Joint entropy, optimization methods.				

Suggested Readings:

- 1. Quatieri, T. F. Discrete-Time Speech Signal Processing: Principles and Practice. Upper Saddle River, NJ: Prentice-Hall, 2001. ISBN: 9780132429429.
- 2. Lim, J. S. Two-Dimensional Signal and Image Processing. Upper Saddle River, NJ: Prentice Hall, 1989. ISBN: 9780139353222.
- 3. Gonzalez, R., and R. E. Woods. Digital Image Processing. 2nd ed. Upper Saddle River, NJ: Prentice-Hall, 2002. ISBN: 9780201180756.

Name of The Course	Tissue Engineering & Microfluidics				
Course Code	BMET 5003				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

Students will understand about the Tissue Engineering & Microfluidics

Course Outcomes:

After completion of this course work students able to

CO1	Understand the Introduction to tissue engineering
CO2	Understand the Cell-extracellular matrix interactions
CO3	Understand the Cell and tissue culture
CO4	Understand the tissue engineering case studies
CO5	Understand about the Microfabrication techniques
CO6	Analyze the Microfluidics components

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
20	30	50	100

Course Contents

Unit-1: Introduction to tissue engineering	5 hours		
Cells as therapeutic Agents with examples, Cell numbers and growth rates. Tissue organization,			
Tissue Components, Tissue types, Functional subunits. Tissue Dynamics, Dynamic states of			
tissues, Homeostasis in highly prolific tissues and Tissue repair. Angiogenesis.			
Unit-2: Cell-extracellular matrix interactions	5 hours		
Cell-extracellular matrix interactions - Binding to the ECM, Modifying the ECM, Malfunctions in			
ECM signaling. Direct Cell-Cell contact - Cell junctions in tissues, malfunctions in direct cell-cell			
contact signaling. Response to mechanical stimuli.			
Unit-3: Cell and tissue culture	6 hours		
Cell and tissue culture - types of tissue culture, media, culture environment and maintenance of			
cells in vitro, cryopreservation; Basis for Cell Separation, characterization of cell separation,			
methods of cell separation.			
Unit-4: tissue engineering case studies	7 hours		
Bioreactors for Tissue Engineering.; In vivo cell & tissue engineering case studies: Artificial skin,			
Artificial blood vessels. In vivo cell & tissue engineering case studies: Artificial pancreas, Artificial			
liver. Regeneration of bone, muscle. Nerve regeneration.			
Unit-5: Microfabrication techniques	7 hours		

Materials, Clean room, Silicon crystallography, Miller indices. Oxidation, photolithography- mask, spin coating, exposure and development, Etching, Bulk and Surface micromachining, Wafer bonding. Polymer microfabrication, PMMA/COC/PDMS substrates, micromolding, hot embossing, fluidic interconnections.

Unit-6: Microfluidics components

10 hours

Micropumps, Check-valve pumps, Valve-less pumps, Peristaltic pumps, Rotary pumps, Centrifugal pumps, Ultrasonic pump, EHD pump, MHD pumps. Microvalves, Pneumatic valves, Thermopneumatic valves, Thermomechanical valves, Piezoelectric valves, Electrostatic valves, Electromagnetic valves, Capillary force valves. Microflow sensors, Differential pressure flow sensors, Drag force flow sensors, Lift force flow sensors, Coriolis flow sensors, Thermal flow sensors. Micromixers, Physics of mixing, Pe-Re diagram of micromixers, Parallel lamination, Sequential lamination, Taylor-Aris dispersion. Droplet generators, Kinetics of a droplet, Dynamics of a droplet, In-channel dispensers, T-junction and Cross-junction, Droplet formation, breakup and transport. Microparticle separator, principles of separation and sorting of microparticles, design and applications. Microreactors, Design considerations, Liquid-phase reactors, PCR, Design consideration for PCR reactors

Suggested Readings:

- 1. Nguyen, N. T., Werely, S. T., Fundamentals and applications of Microfluidics, Artech house Inc., 2002.
- 2. Bruus, H., Theoretical Microfluidics, Oxford University Press Inc., 2008.
- 3. Madou, M. J., Fundamentals of Microfabrication, CRC press, 2002.
- 4. Tabeling, P., Introduction to microfluidics, Oxford University Press Inc., 2005
- 5. Kirby,B.J., Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices, Cambridge University Press, 2010.
- 6. Colin, S., Microfluidics, John Wiley & Sons, 2009.

Name of The Course	Bioethics and Biosafety
Course Code	BMET 5004
Prerequisite	
Corequisite	
Antirequisite	
	L T P C
	3 0 0 3

Course Objectives:

To understand the Bioethics and Biosafety

Course Outcomes

On completion of this course the students will be able to understand

CO1	Understand the Conceptual foundations of biomedical ethics	
CO2	Analyze the Ethics in health care	
CO3	Examine the Ethical dimensions of GMO & Bioweapons	

CO4	Understand the Biosafety regulations and competent authorities
CO5	Analyze the Principles and components of containment
CO6	Examine the Operational Guides on Containment

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End	Term	Test	Total Marks
		(ETE)			
20	30	50			100

Course Content

Unit-1 Conceptual foundations of biomedical ethics	7 hours		
Principlism; Deontology; Consequentialism/Utilitarianism; Communitarianism; Vir	tue ethics; Ethics		
of Care; Human Rights			
Unit-2 Ethics in health care	7 hours		
Ethical dimensions of palliative care and end-of-life care; Reproductive health ethic	cs; Ethical issues		
in global health; Ethics and the pharmaceutical industry; Ethical issues in rural he	ealth care		
Unit-3 Ethical dimensions of GMO & Bioweapons	7 hours		
Ethical dimensions of genetic and genome-based research; Ethical dimensions of re	search involving		
bioweapons; Ethics in gene therapy, germ line, somatic, embryonic and adult sten	n cell research.		
Unit-4 Biosafety regulations and competent authorities	7 hours		
Recombinant DNA Advisory Committee (RDAC); Review Committee on Genetic Manipulation			
(RCGM); Institutional Biosafety Committee (IBSC); Genetic Engineering Appra	aisal Committee		
(GEAC); State Biotechnology Co-ordination Committee (SBCC); District Level Co	ommittee (DLC)		
Unit -5 Principles and components of containment	5 hours		
Factors in Containment: Physical Containment; Biological Containment; Laborat	ory Monitoring;		
Health and Medical Surveillance; Decontamination and Disposal; Emergency Proc	cedures;		
Unit -6 Operational Guides on Containment	7 hours		
Microbiological Biosafety Level (BSL) Facilities; Containment For Large Scale	e Operations Of		
Genetically Engineered (GE) Microorganisms; Animal Biosafety Level Facilitie	es; Containment		
requirement for import, export and exchange			

Suggested Readings:

1. Beier, F.K., Crespi, R.S. and Straus, T. Biotechnology and Patent protection-Oxford and IBH Publishing Co. New Delhi

- 2. Bioethics and Biosafety- M.K. Sateesh
- 3. Bioethics and Biosafety- Rajmohan

Name of The Course	Biopotentials				
Course Code	BMET 5005				
Prerequisite					
Corequisite					
Antirequisite					
]	L	Т	Р	C
		3	0	0	3

Course Objectives:

To impart the complete knowledge of Electrophysiology which forms the base of Bioinstrumentation i.e. how Bioelectric signals are generated, propagated, transduced, amplified and recorded. Proper recording of the bioelectric signals help in diagnosis of the diseases.

Course Outcomes

On completion of this course the students will be able to understand

CO1	Understanding of bioelectric phenomena
CO2	Understanding of Interaction of signals
CO3	Understanding of Electrical circuit model of the membrane
CO4	Analyze the ECG EMG and EEG
CO5	Examine the Central nervous system and neuro-control mechanisms
CO6	Analyze the Receptors as biological transducers

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Course Content:

Unit-1: Introduction to bioelectric phenomena 7 hours
Bioelectric phenomena, Neurons and Synapse; Generation, Transmission and Propagation of signals
in nervous systems – Resting Potential, Action Potential, Synaptic Potential.
Unit-2: Interaction of signals 7 hours
EPSP (Excitatory Post Synaptic Potentials) and IPSP (Inhibitory Post Synaptic Potentials);
Interaction of signals to control various functions and reflexes of body.
Unit-3: Electrical circuit model of the membrane 7 hours
Electrical circuit model of the bio-membrane, The Laws of stimulation and conduction of nerve
impulse.
Unit-4 : ECG EMG and EEG 7 hours
Electrocardiography (ECG) and its diagnostic applications- Generation and propagation of cardiac
impulse, SA node as Pacemaker, Ectopic Pacemakers, PQRST Wave Pattern. Various cardiographic
leads (Limb leads, Chest leads), Vectorial analysis of normal and diseased heart Electrophysiological
signals- EMG, Brain potentials and their generation, Propagation, recording and diagnostic
applications.
Unit-5: Central nervous system and neuro-control mechanisms 7 hours
Nervous system, Neuro-Anatomy in brief, Neural circuits for processing information, Central
Nervous System, Peripheral Nervous System, Ventricle and Cerebrospinal Fluid, Neuro control
Mechanisms

Unit-6 Receptors as biological transducers	5 hours
Receptors as biological transducers, Transduction and Amplification in receptors, 1	Properties of
receptors	

Suggested Readings:

- 1. Introduction to Neurobiophysics, Vasilescu, S.G. Margineanu, Abascus Press, Tunbridge Wells, Vent.
- 2. Text Book of Medical Physiology, Guyton A.C. and J.E. Hall, Harcourt India Pvt. Ltd.
- 3. Anatomy and Physiology, Ross and Wilson, Churchill Livingstone.

Elective-III

Name of The Course	Linear Integrated Circuits				
Course Code	BMET 5006				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

Students will understand about the Linear Integrated Circuits

Course Outcomes:

After completion of this course work students able to

CO1	Understand the Integrated Circuits
CO2	Understand the Operation Amplifier
CO3	Understand the OP-AMP APPLICATIONS
CO4	Understand the Active Filters, Oscillators And Regulators
CO5	Understand about the TIMERS & PHASE LOCKED LOOPS
CO6	Analyze the D-A AND A- D CONVERTERS

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Course Contents

Unit-1: Integrated Circuits	7 hours				
Classification, chip size and circuit complexity, Fundamentals of Monolithic					
planar processes, Fabrication of a typical circuit, Active and passive components of ICs, fabrication					
of FET, Thin and thick film technology.	,				
Unit-2: Operation Amplifier	7 hours				
Basic information of Op-amp, ideal and practical Op-amp, Op-amp characterist	tics, 741 op-amp and				
its features, modes of operation-inverting, noninverting, differential mode					
Unit-3: OP-AMP APPLICATIONS	7 hours				
Basic application of Op-amp, instrumentation amplifier, ac amplifier, V to I at	nd I to V converters,				
Precision rectifiers, log and antilog amplifiers, sample & hold circuits, multipl	iers and dividers,				
Differentiators and Integrators, Comparators, Schmitt trigger, Multivibrator, 7	Friangular wave				
generator.	1				
Unit-4: Active Filters, Oscillators And Regulators 7 hours					
Introduction-Low pass and High pass filters- Design of first and second order Butterworth lowpass					
and high pass filters Band pass, Band reject and all pass filters- Oscillator types and principle of					
operation – RC, Wien bridge oscillators triangular, saw-tooth, square wave and VCO- Introduction					
to voltage regulators, features of 723, Three Terminal IC regulators- DC to DC	C Converter-				
Switching Regulators-UPS-SMPS.					
Unit-5: Timers & Phase Locked Loops	7 hours				
Introduction to 555 timer, functional diagram, monostable and astable operation					
Schmitt Trigger. PLL - introduction, block schematic, principles and descripti	on of individual				
blocks of 565-PLL applications, Analog and digital phase detectors.					
Unit-6: D-A AND A- D CONVERTERS	5 hours				
Introduction, basic DAC techniques, weighted resistor DAC, R-2R ladder DAC, Different types of					
ADCs - parallel comparator type ADC, counter type ADC, successive approximation ADC, dual					
slope ADC and Sigma delta ADC. DAC and ADC specifications. DAC 0800 and ADC 0804 pin					
diagram and applications					

Suggested Readings:

- 1. D. Roy Chowdhury, "Linear Integrated Circuits" New Age International (p) Ltd, 2nd Ed., 2003.
- 2. R.F. Coughlin & Fredrick F. Driscoll. Operational Amplifiers & Linear Integrated Circuits, PHI, 6th Edition, 2003
- 3. Ramakanth A. Gayakwad, Op-Amps & Linear ICs PHI, 4th Edition 2004.

Name of The Course	Drug Discovery and Development				
Course Code	BMET 5007				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

Students will get exposure about Drug Discovery and Development

Course Outcomes:

After completion of this course work students able to

CO1	Understand about the basic concepts of Drug Discovery and Development
CO2	Understand about the Pre-Clinical Studies
CO3	Understand about Bioassays
CO4	Understand about the Drug designing
CO5	Understand about the Methods and Process of Drug discovery
CO6	Understand about the Non Clinical Drug Development

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Course Content:

Unit-1: Introduction to Drug development	7 hours				
Need for a new Drug, Target identification, lead identification, Sources of new drugs: synthetic,					
natural, endogenous, peptides; compounds for screening as a potential drug, Drug	Discovery & Drug				
development process. In vivo, in vitro and in silico studies. Animal models of di	seases.				
Unit-2: Pre-Clinical Studies	7 hours				
Importance of Pre-Clinical studies, Steps involved in Pre-clinical studies, Typ	bes of Pre-Clinical				
Studies, Introduction to toxicology, Organ specific toxicity, Toxicity Studies.					
Unit-3: Bioassays					
Bioassays; Biochemical, Molecular, Behavioural & Physiological parameter analysis,					
Pharmacokinetics, Pharmacology, Pharmacodynemics, Tissue distribution study	Pharmacokinetics, Pharmacology, Pharmacodynemics, Tissue distribution study				
Unit-4: Drug designing	7 hours				
Drug design-Ligand based, Structure based, target-centered drug design: DNA,	RNA and Protein				
based drug designing, Structure Activity Relationship (SAR), Quantitative	Structure Activity				
Relationship (QSAR), Computer assisted drug designing (CADD)	Relationship (QSAR), Computer assisted drug designing (CADD)				
Unit-5: Methods and Process of Drug discovery	7 hours				
High Through Put Screening (HTS): Introduction, Advantages and Disadvantages, Uses,					
Methodology; Combinatorial Chemistry, methods and processes; Lead optimization techniques					
Unit-6: Non Clinical Drug Development	5 hours				
GLP, GMP, GCP; submission of IND, NDA, ANDA					

Suggested Readings

- 1 Preclinical Drug Development, Edited by Mark Rogge, David R. Taft, Second Edition, 25th Sep 2009.
- 2 Hill RG. Drug Discovery and Development-E-Book: Technology in Transition. Elsevier Health Sciences; 2012 Jul 20.
- 3 Choudhary MI, Thomsen WJ. Bioassay techniques for drug development. CRC Press; 2001 Oct 4.
- 4 Klebe G. Drug Design: Methodology, concepts, and mode-of-action. Heidelberg, Germany: Springer; 2013 Jul 10.
- 5 Armstrong JD, Hubbard RE, Farrell T, Maiguashca B, editors. Structure-based drug discovery: an overview. Royal Society of Chemistry; 2006

Semester VI

Name of The Course	Biophysics & Biochemistry				
Course Code	BMET 6001				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

Students will understand about the Biophysics & Biochemistry

Course Outcomes:

After completion of this course work students able to

CO1	Understand the Biological principles
CO2	Understand the Bioelectricity
CO3	Understand the Electrical stimulus & Biophysical activity
CO4	Understand the Radioactivity
CO5	Understand about the Macromolecules
CO6	Analyze the Enzymes and Nucleic acids

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Unit-1: Biological principles	7 hours	
Composition & properties of the cell membrane, membrane transports, permeability C	oefficient &	
partition coefficient, body fluids, electrolytes, acid-base balance, blood viscosity and N	lewtonian	
nature, colloids, filtration, diffusion, osmosis, dialysis, ultrafiltration, ultracentrifugation	ion, cellular	
fractionation, electrophoresis, plasmapherosis, radioimmunoassay, Photochemical read	ction, law of	
photochemistry, fluorescence and phosphorescence		
Unit-2: Bioelectricity	7 hours	
Membrane Potential, Local and propagator types, Diffusion potential, phase boundary	potentials,	
Generator Potentials, compound Action Potentials (AP), Propagation of AP, factors in	U	
propagation of AP, biosignal and types, Electrical properties of excitable membranes, I		
Capacitance, Resistance, conductance, dielectric properties of membrane, space and time		
for excitable membrane, equivalent electrical circuit diagram for excitable membranes	and neural	
membranes		
Unit-3: Electrical stimulus & Biophysical activity	7 hours	
Stimuli, Receptor potential, pacemaker potential, strengthduration relationship, skin i	1	
total body impedance, impedances at high frequencies, patient safety, electrical shock a		
leakage current, different wave forms & their characteristics. waveform and significan		
Unit-4: Radioactivity	7 hours	
Ionizing radiations, U-V & I-R radiations, Production of radioisotopes & their use in b		
research, Radioactive decays, Half life period, Linear Energy Transfers (LET), Relative	Biological	
Efficiency (RBE) and Interaction of radiation with-matter	1	
Unit-5: Macromolecules	7 hours	
Classification and functions of carbohydrates, glycolysis, TCA cycle, ATP sysnthesis,		
analysis and glucose tolerance test, Classification and functions of proteins, architecture	I .	
Classification of amino acids, Oxidative and non oxidative deamination, transamination		
decarboxylation, urea cycle, Purification/separation of proteins, Classification and fund	ctions of	
lipids, biosynthesis of long chain fatty acids, oxidation and degradation of fatty acids.	1	
Unit-6: Enzymes and Nucleic acids	5 hours	
Chemical nature and broad classification of enzymes, M-M-Kinetics, Isozymes and Al		
enzymes, Isolation techniques, Structure of DNA, Genetic code, Recombinant DNA, Transcription		
& Translation, Reverse Transcription, Replication.		

Suggested Readings:

1. Radiation Biophysics, Second Edition - by Edward L. Alpen - Academic Press; 2 edition

2. Bio-Physics – Roland Glaser- Springer; 2nd printing edition (November 23, 2004)

3. Text book of Medical Physiology- Guyton

4. The Biomedical Engineering Hand Book- 3rd Ed- (Biomedical Engineering Fundamentals) - Joseph D.Bronzino – CRC –Tylor-Francis – 2006 (Section- III – Bio-Electrical Phenomena)

5. Lehninger Principles of Biochemistry, Fourth Edition - by David L. Nelson & Michael M.Cox, - W. H.Freeman; 4 edition (April 23, 2004)

6. Fundamentals of Biochemistry: Life at the Molecular Level - by Donald J. Voet , Judith G. Voet & Charlotte W. Pratt. - Wiley; 2 edition (March 31, 2005)

Name of The Course	Automation And Quality Control In Biomedical Engineering				
Course Code	BMET 6002				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

Students will understand about the Automation and Quality Control in Biomedical Engineering

Course Outcomes:

After completion of this course work students able to

CO1	Understand the Robotic Surgery
CO2	Understand the Mobile Robotics
CO3	Understand the Advanced Robotics systems
CO4	Understand the Biomedical Applications of Medical Robotics
CO5	Understand about the Quality Control
CO6	Analyze the Need for Standardization

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Course Contents

Unit-1: Robotic Surgery	7 hours			
Surgical Robots – Types, Advances and Applications. Technologies involved in Robotic Surgery –				
Sensors, Actuators, Micromechanics, Communication control, Virtual Reality and Artificial				
Intelligence. Application of Intelligent tools for Robotic systems design, Integration of	f Electronics			
and Communication systems with Human nerve network.	-			
Unit-2: Mobile Robotics	7 hours			
Architecture of Advanced Mobile Robotics, Actuator design, Navigation, Obstacle avo	oidance,			
Sensors and Vision systems. Legged Robotic devices, Control of Mobile Robots in Sen	ni structured			
environment				
Unit-3: Advanced Robotics systems 7 hours				
Control, Instrumentation – Navigation – Route planning – Autonomous operation – Hap	Control, Instrumentation – Navigation – Route planning – Autonomous operation – Haptic interface			
- Haptic feedback in systems design - System Architecture - Data fusion - System in	tegration,			
Advances in Micromechatronics. Robotic systems: Robotic Radio surgery system, Cor	nputer			
assisted surgery and Rehabilitation Robotics in Virtual environment	-			
Unit-4: Biomedical Applications of Medical Robotics 7 hours				
Nerve cell repair using Micromechatronics, Micro and Nanodevices for targeted delivery of				
medicines to tumour sites and diagnosis using navigable biosensors, Surgeries performed using				
robotic systems- Mitral valve Surgery and minimally invasive surgeries, Surgical procedures in				

General surgery, Neurology, Urology, Gastroenterology, Cardiology, Orthopedics, Pediatrics and Radio surgery

Unit-5: Quality Control 7 hours		
Quality control tools, Problem solving methodologies, New Management Tools, Quality policy		
development, Quality function development, designing for Quality, Manufacturing for Quality		
Unit-6: Need for Standardization 5 hours		
Regional, National, International Standardization, Methods for Testing Standardization,		
Maintenance of Standardization & Recalibration, Food and Drug Administration Regulations		

Suggested Readings:

1. *"Advanced Robotics and Intelligent Machines"*, J.O.Roy, Darwin G.Caldwell, D.G.Campbell, Institution of Electrical Engineers, 1996.

2. "Computer Vision, Virtual Reality and Robotics in Medicine", Nicholas Ayache Springer-Verlag, 1993.

- 3. "Robotics Research", Raymond A.Jarvis, Alexander Zelinsky Springer, 2003.
- 4. "Embedded Robotics", Thomas Braunl Springer, 2003.

5. *"Sensor Based Intelligent Robots",* Gregory D.Hager, H.I.Christensen, Horst Bunke, Rolf Klein Springer, 2002.

6. *"Primer of Robotic and Telerobotic Surgery",* Garth H.Ballantyne, Jacques Marescaux, Pier Cristoforo Giulianotti Williams & Wilkins, 2004.

Name of The Course	Virtual Instrumentation Design For Medical Systems				
Course Code	BMET 6004				
Prerequisite					
Corequisite					
Antirequisite					
	Ι		Т	Р	С
		3	0	0	3

Course Objectives:

Students will understand about the Virtual Instrumentation Design For Medical Systems

Course Outcomes:

After completion of this course work students able to

CO1	Understand the Review of Virtual Instrumentation
CO2	Understand the G Programming
CO3	Understand the Programming Structure & Techniques
CO4	Understand the Hardware Overview
CO5	Understand about the Data Acquisition Basics
CO6	Analyze the principle of Analysis Tools

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
20	30	50	100

Course Contents

General functional description of a digital instrument - block diagram of a virtual instrument - physical quantities and analog interfaces - hardware and software - user interfaces - advantages of virtual instrumentation over conventional instruments - architecture of a virtual instrument and its relation to the operating system. LabVIEW: Basic arithmetic operations, Boolean operations Unit-2: G Programming 7 hours Software environment - palettes - data types and colour coding - editing, debugging and running a VI - data flow programming - modular programming - loops - local and global variables. LabVIEW: Sum of 'n' numbers using 'for' loop, 'While'loop. Unit-3: Programming Structure & Techniques 7 hours Programming Techniques: VIS and sub-VIS loops and charts, arrays, clusters and graphs, case and sequence structures, formula nodes, local and global variables, string and file I/O, Graphical programming in data flow, comparison with conventional programming. Arrays and clusters - sequence structures - plotting data - making decisions in a vi - strings and File I/O - semaphores - TCP/IP - shared variables - data publishing - state machines LabVIEW: Array maximum and minimum Unit-4: Hardware Overview & Common Instrument Interfaces 7 hours PC architecture: current trends - operating system requirement drivers - interface buses - PCI, PXI and USB buses - interface cards: specifications LabVIEW: Application using formula node; Current loop, RS.232C/RS.485, GPIB, System buses, interface buses: USB, PCMCIA, VXI, SCXI, PXI, etc., networking basics for office & Industrial applications, Visa and IVI, image acquisition and processing. Motion control. ADC, DAC, DIO, DMM, waveform generator.					
physical quantities and analog interfaces - hardware and software - user interfaces - advantages of virtual instrumentation over conventional instruments - architecture of a virtual instrument and its relation to the operating system. LabVIEW: Basic arithmetic operations, Boolean operations Unit-2: G Programming 7 hours Software environment - palettes - data types and colour coding - editing, debugging and running a VI - data flow programming - modular programming - loops - local and global variables. LabVIEW: Sum of 'n' numbers using 'for' loop, 'While'loop. Unit-3: Programming Structure & Techniques 7 hours Programming Techniques: VIS and sub-VIS loops and charts, arrays, clusters and graphs, case and sequence structures, formula nodes, local and global variables, string and file I/O, Graphical programming in data flow, comparison with conventional programming. Arrays and clusters - sequence structures - plotting data - making decisions in a vi - strings and File I/O - semaphores - TCP/IP - shared variables - data publishing - state machines LabVIEW: Array maximum and minimum Unit-4: Hardware Overview & Common Instrument Interfaces 7 hours PC architecture: current trends - operating system requirement drivers - interface buses - PCI, PXI and USB buses - interface cards: specifications LabVIEW: Application using formula node; Current loop, RS.232C/RS.485, GPIB, System buses, interface buses: USB, PCMCIA, VXI, SCXI, PXI, etc., networking basics for office & Industrial applications, Visa and IVI, image acquisition and processing. Motion control. ADC, DAC, DIO, DMM, waveform generator. Unit-5: Data Acquisition Basics 7 hours ADC, DAC, DIO, Counters & timers, PC Hardware structure, timing, interrupts, DMA, Software and Hardware Installation. GPIB/IEEE 488 concepts, and embedded system buses - PCI, EISA, CPCI, and USB & VXI. A; Classification of signals - analog and digital interfacing - DAQ hardware and software - configuring the hardware - ADC, DaC, Digital I/O, counters and timers - advanced triggering of audio	Unit-1: Review of Virtual Instrumentation	7 hours			
virtual instrumentation over conventional instruments - architecture of a virtual instrument and its relation to the operating system. LabVIEW: Basic arithmetic operations, Boolean operations Unit-2: G Programming 1 A types and colour coding - editing, debugging and running a VI - data flow programming - modular programming - loops - local and global variables. LabVIEW: Sum of 'n' numbers using 'for' loop, 'While'loop. Unit-3: Programming Structure & Techniques 7 hours Programming Techniques: VIS and sub-VIS loops and charts, arrays, clusters and graphs, case and sequence structures, formula nodes, local and global variables, string and file I/O, Graphical programming in data flow, comparison with conventional programming. Arrays and clusters - sequence structures - plotting data - making decisions in a vi - strings and File I/O - semaphores - TCP/IP - shared variables - data publishing - state machines LabVIEW: Array maximum and minimum Unit-4: Hardware Overview & Common Instrument Interfaces 7 hours PC architecture: current trends - operating system requirement drivers - interface buses - PCI, PXI and USB buses - interface cards: specifications LabVIEW: Application using formula node; Current loop, RS.232C/RS.485, GPIB, System buses, interface buses: USB, PCMCIA, VXI, SCXI, PXI, etc., networking basics for office &.Industrial applications, Visa and IVI, image acquisition and processing. Motion control. ADC, DAC, DIO, DMM, waveform generator. Unit-5: Data Acquisition Basics 7 hours ADC, DAC, DIO, Counters & timers, PC Hardware structure, timing, interrupts, DMA, Software and Hardware Installation. GPIB/IEEE 488 concepts, and embedded system buses - PCI, EISA, CPCI, and USB & VXI. A; Clasification of signals - analog and digital interfacing - DAQ hardware and software - configuring the hardware - ADC, DAC, Digital I/O, counters and timers - advanced triggering of audio and video signals - basic system components of a signal conditioning system. LabVIEW: Instrumentation of an amplifier to acquire an ECG signal u					
relation to the operating system. LabVIEW: Basic arithmetic operations, Boolean operations Unit-2: G Programming 7 hours Software environment - palettes - data types and colour coding - editing, debugging and running a VI - data flow programming - modular programming - loops - local and global variables. Image: Colour Coding - editing, debugging and running a VI - data flow programming - modular programming - loops - local and global variables. LabVIEW: Sum of 'n' numbers using 'for' loop, 'While'loop. 7 hours Programming Techniques: VIS and sub-VIS loops and charts, arrays, clusters and graphs, case and sequence structures, formula nodes, local and global variables, string and file I/O, Graphical programming in data flow, comparison with conventional programming. Arrays and clusters - sequence structures - plotting data - making decisions in a vi - strings and File I/O - semaphores - TCP/IP - shared variables - data publishing - state machines LabVIEW: Array maximum and minimum Unit-4: Hardware Overview & Common Instrument Interfaces 7 hours PC architecture: current trends - operating system requirement drivers - interface buses - PCI, PXI and USB buses - interface cards: specifications LabVIEW: Application using formula node; 7 hours ADC, DAC, DIO, Counters & timers, PC Hardware structure, timing, interrupts, DMA, Software and Hardware Installation. GPIB/IEEE 488 concepts, and embedded system buses - PCI, EISA, CPCI, and USB & VXI. A; Classification of signals - analog and digital interfacing - DAQ hardware and software - configuring the hardware - ADC, DAC, Digital I/O, counters and timers - advanced triggering of audio and video signals - basic system components of a si					
Unit-2: G Programming 7 hours Software environment - palettes - data types and colour coding - editing, debugging and running a VI - data flow programming - modular programming - loops - local and global variables. LabVIEW: Sum of 'n' numbers using 'for' loop, 'While'loop. 7 hours Unit-3: Programming Structure & Techniques 7 hours Programming Techniques: VIS and sub-VIS loops and charts, arrays, clusters and graphs, case and sequence structures, formula nodes, local and global variables, string and file I/O, Graphical programming in data flow, comparison with conventional programming. Arrays and clusters - sequence structures - plotting data - making decisions in a vi - strings and File I/O - semaphores - TCP/IP - shared variables - data publishing - state machines LabVIEW: Array maximum and minimum Unit-4: Hardware Overview & Common Instrument Interfaces 7 hours PC architecture: current trends - operating system requirement drivers - interface buses - PCI, PXI and USB buses - interface cards: specifications LabVIEW: Application using formula node; 7 hours VII + 5: Data Acquisition Basics 7 hours 7 hours ADC, DAC, DIO, Counters & timers, PC Hardware structure, timing, interrupts, DMA, Software and Hardware Installation. GPIB/IEEE 488 concepts, and embedded system buses - PCI, EISA, CPCI, and USB & VXI. A; Classification of signals - analog and digital interfacing - DAQ hardware and software - configuring the hardware - ADC, DAC, Digital I/O, counters and timers - advanced triggering of audio and video signals - basic system components of a signal conditioning system. LabVIEW: Instrumentation of a					
Software environment - palettes - data types and colour coding - editing, debugging and running a VI - data flow programming - modular programming - loops - local and global variables. LabVIEW: Sum of 'n' numbers using 'for' loop, 'While'loop. Unit-3: Programming Structure & Techniques 7 hours Programming Techniques: VIS and sub-VIS loops and charts, arrays, clusters and graphs, case and sequence structures, formula nodes, local and global variables, string and file I/O, Graphical programming in data flow, comparison with conventional programming. Arrays and clusters - sequence structures - plotting data - making decisions in a vi - strings and File I/O - semaphores - TCP/IP - shared variables - data publishing - state machines LabVIEW: Array maximum and minimum Unit-4: Hardware Overview & Common Instrument Interfaces 7 hours PC architecture: current trends - operating system requirement drivers - interface buses - PCI, PXI and USB buses - interface cards: specifications LabVIEW: Application using formula node; 7 hours Qurrent loop, RS.232C/RS.485, GPIB, System buses, interface buses: USB, PCMCIA, VXI, SCXI, PXI, etc., networking basics for office &.Industrial applications, Visa and IVI, image acquisition and processing. Motion control. ADC, DAC, DIO, DMM, waveform generator. 7 hours ADC, DAC, DIO, Counters & timers, PC Hardware structure, timing, interrupts, DMA, Software and Hardware Installation. GPIB/IEEE 488 concepts, and embedded system buses - PCI, EISA, CPCI, and USB & VXI. A; Classification of signals - analog and digital interfacing - DAQ hardware and software - cofiguring the hardware - ADC, DAC, Digital I/O, counters and timers - advanced trig	relation to the operating system. LabVIEW: Basic arithmetic operations, Boolean oper	ations			
VI - data flow programming - modular programming - loops - local and global variables. LabVIEW: Sum of 'n' numbers using 'for' loop, 'While'loop. Unit-3: Programming Structure & Techniques 7 hours Programming Techniques: VIS and sub-VIS loops and charts, arrays, clusters and graphs, case and sequence structures, formula nodes, local and global variables, string and file I/O, Graphical programming in data flow, comparison with conventional programming. Arrays and clusters - sequence structures - plotting data - making decisions in a vi - strings and File I/O - semaphores - TCP/IP - shared variables - data publishing - state machines LabVIEW: Array maximum and minimum Unit-4: Hardware Overview & Common Instrument Interfaces 7 hours PC architecture: current trends - operating system requirement drivers - interface buses - PCI, PXI and USB buses - interface cards: specifications LabVIEW: Application using formula node; 7 hours Qurrent loop, RS.232C/RS.485, GPIB, System buses, interface buses: USB, PCMCIA, VXI, SCXI, PXI, etc., networking basics for office &.Industrial applications, Visa and IVI, image acquisition and processing. Motion control. ADC, DAC, DIO, DMM, waveform generator. 7 hours ADC, DAC, DIO, Counters & timers, PC Hardware structure, timing, interrupts, DMA, Software and Hardware Installation. GPIB/IEEE 488 concepts, and embedded system buses - PCI, EISA, CPCI, and USB & VXI. A; Classification of signals - analog and digital interfacing - DAQ hardware and software - configuring the hardware - ADC, DAC, Digital I/O, counters and timers - advanced triggering of audio and video signals - basic system components of a signal conditioning system. LabVIEW: Instrumentation of an amplifi	Unit-2: G Programming	7 hours			
LabVIEW: Sum of 'n' numbers using 'for' loop, 'While'loop.7 hoursUnit-3: Programming Structure & Techniques7 hoursProgramming Techniques: VIS and sub-VIS loops and charts, arrays, clusters and graphs, case and sequence structures, formula nodes, local and global variables, string and file I/O, Graphical programming in data flow, comparison with conventional programming. Arrays and clusters - sequence structures - plotting data - making decisions in a vi - strings and File I/O - semaphores - TCP/IP - shared variables - data publishing - state machines LabVIEW: Array maximum and minimumUnit-4: Hardware Overview & Common Instrument Interfaces7 hoursPC architecture: current trends - operating system requirement drivers - interface buses - PCI, PXI and USB buses - interface cards: specifications LabVIEW: Application using formula node; Current loop, RS.232C/RS.485, GPIB, System buses, interface buses: USB, PCMCIA, VXI, SCXI, PXI, etc., networking basics for office &.Industrial applications, Visa and IVI, image acquisition and processing. Motion control. ADC, DAC, DIO, DMM, waveform generator.7 hoursADC, DAC, DIO, Counters & timers, PC Hardware structure, timing, interrupts, DMA, Software and Hardware Installation. GPIB/IEEE 488 concepts, and embedded system buses - PCI, EISA, CPCI, and USB & VXI. A; Classification of signals - analog and digital interfacing - DAQ hardware and software - configuring the hardware - ADC, DAC, Digital I/O, counters and timers - advanced triggering of audio and video signals - basic system components of a signal conditioning system. LabVIEW: Instrumentation of an amplifier to acquire an ECG signal using NI vision	Software environment - palettes - data types and colour coding - editing, debugging ar	nd running a			
Unit-3: Programming Structure & Techniques7 hoursProgramming Techniques: VIS and sub-VIS loops and charts, arrays, clusters and graphs, case and sequence structures, formula nodes, local and global variables, string and file I/O, Graphical programming in data flow, comparison with conventional programming. Arrays and clusters - sequence structures - plotting data - making decisions in a vi - strings and File I/O - semaphores - TCP/IP - shared variables - data publishing - state machines LabVIEW: Array maximum and minimumUnit-4: Hardware Overview & Common Instrument Interfaces7 hoursPC architecture: current trends - operating system requirement drivers - interface buses - PCI, PXI and USB buses - interface cards: specifications LabVIEW: Application using formula node; Current loop, RS.232C/RS.485, GPIB, System buses, interface buses: USB, PCMCIA, VXI, SCXI, PXI, etc., networking basics for office &.Industrial applications, Visa and IVI, image acquisition and processing. Motion control. ADC, DAC, DIO, DMM, waveform generator.7 hoursADC, DAC, DIO, Counters & timers, PC Hardware structure, timing, interrupts, DMA, Software and Hardware Installation. GPIB/IEEE 488 concepts, and embedded system buses - PCI, EISA, CPCI, and USB & VXI. A; Classification of signals - analog and digital interfacing - DAQ hardware and software - configuring the hardware - ADC, DAC, Digital I/O, counters and timers - advanced triggering of audio and video signals - basic system components of a signal conditioning system. LabVIEW: Instrumentation of an amplifier to acquire an ECG signal using NI vision	VI - data flow programming - modular programming - loops - local and global variable	ès.			
Programming Techniques: VIS and sub-VIS loops and charts, arrays, clusters and graphs, case and sequence structures, formula nodes, local and global variables, string and file I/O, Graphical programming in data flow, comparison with conventional programming. Arrays and clusters - sequence structures - plotting data - making decisions in a vi - strings and File I/O - semaphores - TCP/IP - shared variables - data publishing - state machines LabVIEW: Array maximum and minimumUnit-4: Hardware Overview & Common Instrument Interfaces7 hoursPC architecture: current trends - operating system requirement drivers - interface buses - PCI, PXI and USB buses - interface cards: specifications LabVIEW: Application using formula node; Current loop, RS.232C/RS.485, GPIB, System buses, interface buses: USB, PCMCIA, VXI, SCXI, PXI, etc., networking basics for office &.Industrial applications, Visa and IVI, image acquisition and processing. Motion control. ADC, DAC, DIO, DMM, waveform generator.7 hoursUnit-5: Data Acquisition Basics7 hoursADC, DAC, DIO, Counters & timers, PC Hardware structure, timing, interrupts, DMA, Software and Hardware Installation. GPIB/IEEE 488 concepts, and embedded system buses - PCI, EISA, CPCI, and USB & VXI. A; Classification of signals - analog and digital interfacing - DAQ hardware and software - configuring the hardware - ADC, DAC, Digital I/O, counters and timers - advanced triggering of audio and video signals - basic system components of a signal conditioning system. LabVIEW: Instrumentation of an amplifier to acquire an ECG signal using NI vision	LabVIEW: Sum of 'n' numbers using 'for' loop, 'While'loop.				
sequence structures, formula nodes, local and global variables, string and file I/O, Graphical programming in data flow, comparison with conventional programming. Arrays and clusters - sequence structures - plotting data - making decisions in a vi - strings and File I/O - semaphores - TCP/IP - shared variables - data publishing - state machines LabVIEW: Array maximum and minimum Unit-4: Hardware Overview & Common Instrument Interfaces PC architecture: current trends - operating system requirement drivers - interface buses - PCI, PXI and USB buses - interface cards: specifications LabVIEW: Application using formula node; Current loop, RS.232C/RS.485, GPIB, System buses, interface buses: USB, PCMCIA, VXI, SCXI, PXI, etc., networking basics for office &.Industrial applications, Visa and IVI, image acquisition and processing. Motion control. ADC, DAC, DIO, DMM, waveform generator. Unit-5: Data Acquisition Basics ADC, DAC, DIO, Counters & timers, PC Hardware structure, timing, interrupts, DMA, Software and Hardware Installation. GPIB/IEEE 488 concepts, and embedded system buses - PCI, EISA, CPCI, and USB & VXI. A; Classification of signals - analog and digital interfacing - DAQ hardware and software - configuring the hardware - ADC, DAC, Digital I/O, counters and timers - advanced triggering of audio and video signals - basic system components of a signal conditioning system. LabVIEW: Instrumentation of an amplifier to acquire an ECG signal using NI vision	Unit-3: Programming Structure & Techniques	7 hours			
programming in data flow, comparison with conventional programming. Arrays and clusters - sequence structures - plotting data - making decisions in a vi - strings and File I/O - semaphores - TCP/IP - shared variables - data publishing - state machines LabVIEW: Array maximum and minimum Unit-4: Hardware Overview & Common Instrument Interfaces 7 hours PC architecture: current trends - operating system requirement drivers - interface buses - PCI, PXI and USB buses - interface cards: specifications LabVIEW: Application using formula node; Current loop, RS.232C/RS.485, GPIB, System buses, interface buses: USB, PCMCIA, VXI, SCXI, PXI, etc., networking basics for office &.Industrial applications, Visa and IVI, image acquisition and processing. Motion control. ADC, DAC, DIO, DMM, waveform generator. Unit-5: Data Acquisition Basics 7 hours ADC, DAC, DIO, Counters & timers, PC Hardware structure, timing, interrupts, DMA, Software and Hardware Installation. GPIB/IEEE 488 concepts, and embedded system buses - PCI, EISA, CPCI, and USB & VXI. A; Classification of signals - analog and digital interfacing - DAQ hardware and software - configuring the hardware - ADC, DAC, Digital I/O, counters and timers - advanced triggering of audio and video signals - basic system components of a signal conditioning system. LabVIEW: Instrumentation of an amplifier to acquire an ECG signal using NI vision	Programming Techniques: VIS and sub-VIS loops and charts, arrays, clusters and grap	hs, case and			
sequence structures - plotting data - making decisions in a vi - strings and File I/O - semaphores - TCP/IP - shared variables - data publishing - state machines LabVIEW: Array maximum and minimumUnit-4: Hardware Overview & Common Instrument Interfaces7 hoursPC architecture: current trends - operating system requirement drivers - interface buses - PCI, PXI and USB buses - interface cards: specifications LabVIEW: Application using formula node; Current loop, RS.232C/RS.485, GPIB, System buses, interface buses: USB, PCMCIA, VXI, SCXI, PXI, etc., networking basics for office &.Industrial applications, Visa and IVI, image acquisition and processing. Motion control. ADC, DAC, DIO, DMM, waveform generator.Unit-5: Data Acquisition Basics7 hoursADC, DAC, DIO, Counters & timers, PC Hardware structure, timing, interrupts, DMA, Software and Hardware Installation. GPIB/IEEE 488 concepts, and embedded system buses - PCI, EISA, CPCI, and USB & VXI. A; Classification of signals - analog and digital interfacing - DAQ hardware and software - configuring the hardware - ADC, DAC, Digital I/O, counters and timers - advanced triggering of audio and video signals - basic system components of a signal conditioning system. LabVIEW: Instrumentation of an amplifier to acquire an ECG signal using NI vision	sequence structures, formula nodes, local and global variables, string and file I/O, Gra	phical			
TCP/IP - shared variables - data publishing - state machines LabVIEW: Array maximum and minimumUnit-4: Hardware Overview & Common Instrument Interfaces7 hoursPC architecture: current trends - operating system requirement drivers - interface buses - PCI, PXI and USB buses - interface cards: specifications LabVIEW: Application using formula node; Current loop, RS.232C/RS.485, GPIB, System buses, interface buses: USB, PCMCIA, VXI, SCXI, PXI, etc., networking basics for office &.Industrial applications, Visa and IVI, image acquisition and processing. Motion control. ADC, DAC, DIO, DMM, waveform generator.7 hoursUnit-5: Data Acquisition Basics7 hoursADC, DAC, DIO, Counters & timers, PC Hardware structure, timing, interrupts, DMA, Software and Hardware Installation. GPIB/IEEE 488 concepts, and embedded system buses - PCI, EISA, CPCI, and USB & VXI. A; Classification of signals - analog and digital interfacing - DAQ hardware and software - configuring the hardware - ADC, DAC, Digital I/O, counters and timers - advanced triggering of audio and video signals - basic system components of a signal conditioning system. LabVIEW: Instrumentation of an amplifier to acquire an ECG signal using NI vision	programming in data flow, comparison with conventional programming. Arrays and c	lusters -			
minimumUnit-4: Hardware Overview & Common Instrument Interfaces7 hoursPC architecture: current trends - operating system requirement drivers - interface buses - PCI, PXIand USB buses - interface cards: specifications LabVIEW: Application using formula node;Current loop, RS.232C/RS.485, GPIB, System buses, interface buses: USB, PCMCIA, VXI, SCXI,PXI, etc., networking basics for office &.Industrial applications, Visa and IVI, image acquisitionand processing. Motion control. ADC, DAC, DIO, DMM, waveform generator.Unit-5: Data Acquisition Basics7 hoursADC, DAC, DIO, Counters & timers, PC Hardware structure, timing, interrupts, DMA, Softwareand Hardware Installation. GPIB/IEEE 488 concepts, and embedded system buses - PCI, EISA,CPCI, and USB & VXI. A; Classification of signals - analog and digital interfacing - DAQhardware and software - configuring the hardware - ADC, DAC, Digital I/O, counters and timers -advanced triggering of audio and video signals - basic system components of a signal conditioningsystem. LabVIEW: Instrumentation of an amplifier to acquire an ECG signal using NI vision	sequence structures - plotting data - making decisions in a vi - strings and File I/O - se	emaphores -			
Unit-4: Hardware Overview & Common Instrument Interfaces7 hoursPC architecture: current trends - operating system requirement drivers - interface buses - PCI, PXIand USB buses - interface cards: specifications LabVIEW: Application using formula node;Current loop, RS.232C/RS.485, GPIB, System buses, interface buses: USB, PCMCIA, VXI, SCXI,PXI, etc., networking basics for office &.Industrial applications, Visa and IVI, image acquisitionand processing. Motion control. ADC, DAC, DIO, DMM, waveform generator.Unit-5: Data Acquisition Basics7 hoursADC, DAC, DIO, Counters & timers, PC Hardware structure, timing, interrupts, DMA, Softwareand Hardware Installation. GPIB/IEEE 488 concepts, and embedded system buses - PCI, EISA,CPCI, and USB & VXI. A; Classification of signals - analog and digital interfacing - DAQhardware and software - configuring the hardware - ADC, DAC, Digital I/O, counters and timers -advanced triggering of audio and video signals - basic system components of a signal conditioningsystem. LabVIEW: Instrumentation of an amplifier to acquire an ECG signal using NI vision					
PC architecture: current trends - operating system requirement drivers - interface buses - PCI, PXI and USB buses - interface cards: specifications LabVIEW: Application using formula node; Current loop, RS.232C/RS.485, GPIB, System buses, interface buses: USB, PCMCIA, VXI, SCXI, PXI, etc., networking basics for office &.Industrial applications, Visa and IVI, image acquisition and processing. Motion control. ADC, DAC, DIO, DMM, waveform generator. Unit-5: Data Acquisition Basics 7 hours ADC, DAC, DIO, Counters & timers, PC Hardware structure, timing, interrupts, DMA, Software and Hardware Installation. GPIB/IEEE 488 concepts, and embedded system buses - PCI, EISA, CPCI, and USB & VXI. A; Classification of signals - analog and digital interfacing - DAQ hardware and software - configuring the hardware - ADC, DAC, Digital I/O, counters and timers - advanced triggering of audio and video signals - basic system components of a signal conditioning system. LabVIEW: Instrumentation of an amplifier to acquire an ECG signal using NI vision	minimum				
and USB buses - interface cards: specifications LabVIEW: Application using formula node; Current loop, RS.232C/RS.485, GPIB, System buses, interface buses: USB, PCMCIA, VXI, SCXI, PXI, etc., networking basics for office &.Industrial applications, Visa and IVI, image acquisition and processing. Motion control. ADC, DAC, DIO, DMM, waveform generator. Unit-5: Data Acquisition Basics 7 hours ADC, DAC, DIO, Counters & timers, PC Hardware structure, timing, interrupts, DMA, Software and Hardware Installation. GPIB/IEEE 488 concepts, and embedded system buses - PCI, EISA, CPCI, and USB & VXI. A; Classification of signals - analog and digital interfacing - DAQ hardware and software - configuring the hardware - ADC, DAC, Digital I/O, counters and timers - advanced triggering of audio and video signals - basic system components of a signal conditioning system. LabVIEW: Instrumentation of an amplifier to acquire an ECG signal using NI vision	Unit-4: Hardware Overview & Common Instrument Interfaces	7 hours			
and USB buses - interface cards: specifications LabVIEW: Application using formula node; Current loop, RS.232C/RS.485, GPIB, System buses, interface buses: USB, PCMCIA, VXI, SCXI, PXI, etc., networking basics for office &.Industrial applications, Visa and IVI, image acquisition and processing. Motion control. ADC, DAC, DIO, DMM, waveform generator. Unit-5: Data Acquisition Basics 7 hours ADC, DAC, DIO, Counters & timers, PC Hardware structure, timing, interrupts, DMA, Software and Hardware Installation. GPIB/IEEE 488 concepts, and embedded system buses - PCI, EISA, CPCI, and USB & VXI. A; Classification of signals - analog and digital interfacing - DAQ hardware and software - configuring the hardware - ADC, DAC, Digital I/O, counters and timers - advanced triggering of audio and video signals - basic system components of a signal conditioning system. LabVIEW: Instrumentation of an amplifier to acquire an ECG signal using NI vision	PC architecture: current trends - operating system requirement drivers - interface buse	s - PCI, PXI			
PXI, etc., networking basics for office & Industrial applications, Visa and IVI, image acquisition and processing. Motion control. ADC, DAC, DIO, DMM, waveform generator.Unit-5: Data Acquisition Basics7 hoursADC, DAC, DIO, Counters & timers, PC Hardware structure, timing, interrupts, DMA, Software and Hardware Installation. GPIB/IEEE 488 concepts, and embedded system buses - PCI, EISA, CPCI, and USB & VXI. A; Classification of signals - analog and digital interfacing - DAQ hardware and software - configuring the hardware - ADC, DAC, Digital I/O, counters and timers - advanced triggering of audio and video signals - basic system components of a signal conditioning system. LabVIEW: Instrumentation of an amplifier to acquire an ECG signal using NI vision	and USB buses - interface cards: specifications LabVIEW: Application using formula node;				
and processing. Motion control. ADC, DAC, DIO, DMM, waveform generator.Unit-5: Data Acquisition Basics7 hoursADC, DAC, DIO, Counters & timers, PC Hardware structure, timing, interrupts, DMA, Software and Hardware Installation. GPIB/IEEE 488 concepts, and embedded system buses - PCI, EISA, CPCI, and USB & VXI. A; Classification of signals - analog and digital interfacing - DAQ hardware and software - configuring the hardware - ADC, DAC, Digital I/O, counters and timers - advanced triggering of audio and video signals - basic system components of a signal conditioning system. LabVIEW: Instrumentation of an amplifier to acquire an ECG signal using NI vision	Current loop, RS.232C/RS.485, GPIB, System buses, interface buses: USB, PCMCIA, VXI, SCXI,				
Unit-5: Data Acquisition Basics7 hoursADC, DAC, DIO, Counters & timers, PC Hardware structure, timing, interrupts, DMA, Software and Hardware Installation. GPIB/IEEE 488 concepts, and embedded system buses - PCI, EISA, CPCI, and USB & VXI. A; Classification of signals - analog and digital interfacing - DAQ hardware and software - configuring the hardware - ADC, DAC, Digital I/O, counters and timers - advanced triggering of audio and video signals - basic system components of a signal conditioning system. LabVIEW: Instrumentation of an amplifier to acquire an ECG signal using NI vision	PXI, etc., networking basics for office &. Industrial applications, Visa and IVI, image acquisition				
ADC, DAC, DIO, Counters & timers, PC Hardware structure, timing, interrupts, DMA, Software and Hardware Installation. GPIB/IEEE 488 concepts, and embedded system buses - PCI, EISA, CPCI, and USB & VXI. A; Classification of signals - analog and digital interfacing - DAQ hardware and software - configuring the hardware - ADC, DAC, Digital I/O, counters and timers - advanced triggering of audio and video signals - basic system components of a signal conditioning system. LabVIEW: Instrumentation of an amplifier to acquire an ECG signal using NI vision	and processing. Motion control. ADC, DAC, DIO, DMM, waveform generator.	_			
and Hardware Installation. GPIB/IEEE 488 concepts, and embedded system buses - PCI, EISA, CPCI, and USB & VXI. A; Classification of signals - analog and digital interfacing - DAQ hardware and software - configuring the hardware - ADC, DAC, Digital I/O, counters and timers - advanced triggering of audio and video signals - basic system components of a signal conditioning system. LabVIEW: Instrumentation of an amplifier to acquire an ECG signal using NI vision	Unit-5: Data Acquisition Basics	7 hours			
CPCI, and USB & VXI. A; Classification of signals - analog and digital interfacing - DAQ hardware and software - configuring the hardware - ADC, DAC, Digital I/O, counters and timers - advanced triggering of audio and video signals - basic system components of a signal conditioning system. LabVIEW: Instrumentation of an amplifier to acquire an ECG signal using NI vision	ADC, DAC, DIO, Counters & timers, PC Hardware structure, timing, interrupts, DM	A, Software			
hardware and software - configuring the hardware - ADC, DAC, Digital I/O, counters and timers - advanced triggering of audio and video signals - basic system components of a signal conditioning system. LabVIEW: Instrumentation of an amplifier to acquire an ECG signal using NI vision					
advanced triggering of audio and video signals - basic system components of a signal conditioning system. LabVIEW: Instrumentation of an amplifier to acquire an ECG signal using NI vision	CPCI, and USB & VXI. A; Classification of signals - analog and digital interfacing - DAQ				
system. LabVIEW: Instrumentation of an amplifier to acquire an ECG signal using NI vision	hardware and software - configuring the hardware - ADC, DAC, Digital I/O, counters and timers -				
	advanced triggering of audio and video signals - basic system components of a signal conditioning				
	system. LabVIEW: Instrumentation of an amplifier to acquire an ECG signal using N	I vision			
acquisition software	acquisition software				
Unit-6: Use of Analysis Tools 5 hours	Unit-6: Use of Analysis Tools	5 hours			
Fourier transforms, power spectrum correlation methods, windowing & filtering, Major					
equipments- Oscilloscope, Digital Multimeter, Pentium Computers, Application in Biomedical					
field.					

Suggested Readings:

 Kevin James, "PC Interfacing and Data Acquisition: Techniques for Measurement, Instrumentation and Control", Newnes, 2000. Lab VIEW Basics I &II Manual, National Instruments, 2005. Barry E Paton, "Sensors, Transducers & LabVIEW", Prentice Hall of India, New Delhi, 1999

2. Johnson G, Jennings R, "LabVIEW Graphical Programming", Tata McGraw Hill, New York, 2006. Sanjay Gupta, Joseph John, "Virtual Instrumentation using LabVIEW", Tata McGraw Hill, New Delhi, 2010.

Name of The Course	Advanced Biomedical Instrumentation				
Course Code	BMET 6005				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

Students will understand about the Advanced Biomedical Instrumentation

Course Outcomes:

After completion of this course work students able to

CO1	Understand the Physics of fiber optics
CO2	Understand the Laser in biology
CO3	Understand the Lasers in surgery
CO4	Understand the biomedical Lasers
CO5	Understand about the Digital Imaging and Communications in Medicine
CO6	Analyze the

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
20	30	50	100

Course Contents

Unit-1: Physics of fiber optics	7 hours	
Introductory physics of fiber optics, properties, Generation, transmission and detection of fiber		
optics - Fiber optics in diagnosis - Transmission of signals, light, and construction details of optic		
fiber, types of medical fiber optic scopes – Fiber optic sensors for temperature, pressure, liquid		
level, Doppler probe - Fiber optics endoscopy for various organs		
Unit-2: Laser in biology	7 hours	
Laser in biology: Optical properties of tissue, Pathology of laser reaction in skin, thern	nal effects,	
laser irradiation, Non thermal reactions of laser energy in tissue, effect of adjuvant.		
Unit-3: Lasers in surgery	7 hours	

Lasers in surgery: Surgical instrumentation of CO2, Ruby, Nd-YAG, He-Ne, Argon ion, Qswitched operations, continuous wave, Quasi - continuous, surgical applications of these lasers. Lasers in dermatology, lasers in ophthalmology, laser photocoagulations, laser in dentistry. Unit-4: biomedical Lasers 7 hours Speckle intereferometry, holography - Application Safety with biomedical Lasers. Basic principles of Multicolor lasers, plastic imaging multifibers. Intravascular pressure transducers and in vivo oximeters & Virtual reality assisted surgery planning Unit-5: Digital Imaging and Communications in Medicine 7 hours Digital Imaging and Communications in Medicine (DICOM) – data formats – services. Picture archiving and communication system (PACS) – architecture – Integration with Hospital information system (HIS) and Radiology Information System (RIS) – Digital Radiography Unit-6: Biodevices 5 hours ESWL - Smart pacemakers - Minimally invasive robotic surgery - Drug encapsulation - Gene Therapy – Molecular scans - Real time imaging of the Coronary Arteries – Nanomaterials - Smart textiles - Electroactive fabrics and wearable biomonitoring devices - the Bionic person -Nanomotors

Suggested Readings:

1. Ronald W. Waynant, Lasers In Medicine, Taylor & Francis Ltd CRC Press Inc, Hardcover – 2001 (UNITS I, II)

2. Abraham Katzir, Lasers and Optical Fibers in Medicine, Academic Press, Oct-1993 (UNIT III)

3. H. K. Huang, PACS: Basic Principles and Applications (Paperback), Wiley-Liss; 1 edition November, 1998. (UNIT IV)

4. Joseph D Bronzino, The Biomedical Engineering Handbook, CRC Press, Third Edition – Volume II & III (UNIT V)

Elective-IV

Name of The Course	VLSI Design				
Course Code	BMET 6006				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

Students will understand about the VLSI Design

Course Outcomes:

After completion of this course work students able to

CO1	Understand the Introduction to IC Technology
CO2	Understand the VHDL basics
CO3	Understand the Component declarations
CO4	Understand the Concurrent statements
CO5	Understand about the VHDL synthesis
CO6	Analyze the Design of Arithmetic Building Blocks and Subsystem

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Course Contents

Unit-1: Introduction to IC Technology	7 hours	
Introduction to IC Technology – MOS, PMOS, NMOS, CMOS & BiCMOS technologiesPass		
transistor, NMOS Inverter, Various pull ups, CMOS Inverter analysis and design-Gate	realization	
using CMOS-Introduction to Reconfigurable Hardware – HDL basics.		
Unit-2: VHDL basics	7 hours	
VHDL basics - VHDL levels of abstraction - Abstraction and timing - The VHDL desi	gn flow -	
VHDL design entities - Entity declarations - Architectures - Using libraries and packages -		
Concurrent signal assignments - Signal assignments with delays		
Unit-3: Component declarations	7 hours	
Component declarations - Component instantiation - Named port mapping - Positiona	l port	
mapping - Direct instantiation - Configuration specifications - Entity binding Port modes - VHDL		
processes - Processes sensitivity lists - Objects in VHDL - Constants, variables and signals - VHDL		
types - Scalar types - Arrays - Records - Custom types and subtypes		
Unit-4: Concurrent statements	7 hours	

Concurrent statements - Sequential statements - Conditional & selective signal assignments - The generate statement - Signal and variable assignments - For loops - Subprograms – Functions – Procedures - Differences between functions and procedures - Subprogram declarations – Packages - Package declaration - Package body.

Unit-5: VHDL synthesis

7 hours

VHDL synthesis - Modeling hardware in VHDL - VHDL models for multiplexers, Encoders, Decoders, Parity Generators – combinational circuit implementation - compilation and simulation of VHDL code, modeling a sequential machine, Test bench development.

Unit-6: Design of Arithmetic Building Blocks and Subsystem5 hoursArithmetic Building Blocks: Data Paths, Adders, Multipliers, Shifters, ALUs, power and speed
tradeoffs, Case Study: Design as a tradeoff.Designing Memory and Array structures: Memory
Architectures and Building Blocks, Memory Core, Memory Peripheral Circuitry.5 hours

Suggested Readings:

1. Chip Design for Submicron VLSI: CMOS Layout & Simulation, - John P. Uyemura, Thomson Learning.

2. Introduction to VLSI Circuits and Systems - John .P. Uyemura, JohnWiley, 2003.

- 3. Digital Integrated Circuits John M. Rabaey, PHI, EEE, 1997.
- 4. Modern VLSI Design Wayne Wolf, Pearson Education, 3rd Edition, 1997.

Name of The Course	Biotransport Process				
Course Code	BMET 6007				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

Students will understand about the Biotransport Process

Course Outcomes:

After completion of this course work students able to

CO1	Understand the Basic concepts of transport processes
CO2	Understand the Heat transfer systems
CO3	Understand the Mass transfer principles
CO4	Understand the Mass transfer in artificial kidney devices
CO5	Understand about the Compartmental models
CO6	Analyze the Modeling of the body as compartment

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Course Contents

Unit-1: Basic concepts of transport processes	7 hours
Basic concepts of transport processes. Relationship between flow and effort variables.	Chemical
balances, force balances, general flow balances, Kirchhoff's laws, Conservation of mas	
conservation of energy, momentum balance	,
Unit-2: Heat transfer systems	7 hours
Heat transfer systems. Modes of heat transfer, conduction, convection and radiation.	Heat
production, heat loss to the environment, role of blood circulation in internal heat tran	
for heat transfer within the body.	
Unit-3: Mass transfer principles	7 hours
Mass transfer principles. Mass balance, molecular diffusion, Transport through cell mo	embranes.
Mass transfer in kidneys, models of nephron function, gas transport mechanisms in th	e lungs and
blood. Modelling of oxygen and inert gas uptake in the lungs.	
Unit-4: Mass transfer in artificial kidney devices	7 hours
Mass transfer in artificial kidney devices, modeling of patient-artificial kidney system.	Comparison
of natural and artificial lungs. Models for blood oxygenation, analysis of gas transport i	n membrane
oxygenators.	
Unit-5: Compartmental models	7 hours
Compartmental models. Approaches to pharmacokinetic modeling and drug delivery,	
compartmental models. Physiological applications-intravenous injection, constant intra	ravenous
infusion, determination of regional blood flow volumes and blood flow rates.	•
Unit-6: Modeling of the body as compartment	5 hours
Modeling of the body as compartment; Source and stream; heat exchange between hum	•
its environment; mass transfer in membrane; heamodialysis as related to artificial kidr	ney; Oxygen
Transport in Biological Systems, extracorporeal devices, Pharmacokinetic Analysis.	

Suggested Readings:

1. "Biomedical Engineering Principles, An Introduction to fluid , heat and mass transfer process", Cooney D. O., Marcel Dekker Inc, (1976).

2. "Transport Phenomena is living systems- Biomedical Aspects of Momentum and Man Transport", Lightfoot E. N., John Wiley (1974).

3 "Basic transport phenomena in biomedical engineering", Fournier, Ronald L., Taylor & Francis, 1998.

Semester VII

Name of The Course	BioMEMS and Biosensors				
Course Code	BMET 7001				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

Students will understand about the BioMEMS and Biosensors

Course Outcomes:

After completion of this course work students able to

CO1	Understand the Introduction to BioMEMS
CO2	Understand the Soft fabrication and polymers
CO3	Understand the MEMS biosensors
CO4	Understand the Microarrays
CO5	Understand about the Biological sensors
CO6	Analyze the Applications of biosensors

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
20	30	50	100

Course Contents

Unit-1: Introduction to BioMEMS	7 hours	
Introduction to bio-MEMS. Materials for bio-MEMS. BioMEMS fabrication: bulk/surface		
micromachining, LIGA.		
Unit-2: Soft fabrication and polymers	7 hours	
Soft fabrication and polymers (soft-lithography, micromolding, micro- stereolithography, thick-film		
deposition, SAMs. Microfluidic principles. Microfluidic devices: microchannels, microvalves,		
micropumps, micro- needles, microreserviors, micro-reactors;		
Unit-3: MEMS biosensors	7 hours	
MEMS biosensors. Microactuators and micro drug delivery system. Micro total analysis system		
(µTAS), lab-on-a-chip.		
Unit-4: Microarrays	7 hours	

Microarrays: polymerase chain reactor (PCR), DNA chip, functional genomics, bioinformatics.			
BioMEMS for tissue engineering. Packaging, power, data and RF safety of bioMEMS			
Unit-5: Biological sensors	7 hours		
Chemoreceptors, Baroreceptors, Touch receptors; Biosensors; Working Principle and T	ypes, -		
molecular recognition elements, transducing elements.			
Unit-6: Applications of biosensors	5 hours		
Enzyme-based biosensors, e.g., the blood glucose sensor; Array-based DNA "biochip" s	sensors with		
fluorescence detection; Applications of molecular recognition elements in nanosensing	of different		
analytes; Application of various transducing elements as part of nanobiosensors			

Suggested Readings:

- Mauro Ferrari (editor), BioMEMS and Biomedical Nanotechnology: I: Prospectus, Biological and Biomedical Nanotechnology (A. Lee, L. Lee); II: Micro and Nano-Technologies for Genomics and Proteomics (M. Ozkan and M. Heller); III: Therapeutic Micro/Nanotechnology (T. Desai and S. Bhatia); IV: Biomolecular Sensing, Processing and Analysis (R. Bashid and S. Wereley), Springer, 1st edition, Nov. 30, 2006, ISBN: 0387255613
- 2. Gerald Urban, BioMEMS (Microsystems), Springer, 1st edition, May 5, 2006, ISBN: 0387287310.
- 3. Wanjun Wang, Steven A. Soper, Bio-MEMS: Technologies and Applications, CRC Press, 1st edition, Dec. 15, 2006, ISBN: 0849335329.
- 4. Ville Kaajakari, Practical MEMS: Design of microsystems, accelerometers, gyroscopes, RF MEMS, optical MEMS, and microfluidic systems, Small Gear Publishing, Mar. 17, 2009, ISBN: 0982299109.
- Marc J. Madou, From MEMS to Bio-MEMS and Bio-NEMS: Manufacturing Techniques and Applications, CRC Press, 1st edition, Jun. 16, 2010, ISBN: 142005516X. Ellis Meng, Biomedical Microsystems, CRC Press, 1st edition, ISBN: 1420051229, Sept. 17, 2010.

Name of The Course	Artificial Intelligence & Pattern Recognition				
Course Code	BMET 7002				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

Students will understand about the Artificial Intelligence & Pattern Recognition in biomedical engineering applications

Course Outcomes:

After completion of this course work students able to

School of Biomedical Sciences

CO1	Understand the Introduction to Artificial Intelligence
CO2	Understand the Knowledge representation
CO3	Understand the Pattern Recognition Concepts
CO4	Understand the Linear discriminant functions
CO5	Understand about the Supervised learning and clustering
CO6	Analyze the

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test	Total Marks
		(ETE)	
20	30	50	100

Course Contents

Unit-1: Introduction to Artificial Intelligence	7 hours	
Definition of Artificial Intelligence, History and Applications, Components of AI Structures and		
Strategies for state space search - Data driven and goal driven search , Depth First and H	Breadth First	
Search, DFS with Iterative Deepening ,Heuristic Search - Best First Search, A* Algorit	hm,	
Constraint Satisfaction.		
Unit-2: Knowledge representation	7 hours	
Knowledge representation - Propositional calculus, Predicate Calculus, Theorem provi	ng by	
Resolution, Answer Extraction, AI Representational Schemes- Semantic Nets, Concept	otual	
Dependency, Scripts, Frames		
Unit-3: Pattern Recognition Concepts	7 hours	
Introduction to statistical, syntactic and descriptive approaches, features and feature e	xtraction,	
learning; Bayes Decision theory-introduction, continuous case, 2-categoryclassification	n, minimum	
error rate classification, classifiers, discriminant functions, and decision surfaces. Erro	r	
probabilities and integrals, normal density, discriminant functions for normal density,	Bayes	
Decision theory Discrete case		
Unit-4: Linear discriminant functions	7 hours	
Linear discriminant functions- linear discriminant functions and decision surfaces, ge	neralized	
linear discriminant functions, 2-category linearly separable case, non-separable behavi	or, linear	
programming procedures		
Unit-5: Supervised learning and clustering	7 hours	
Supervised learning and clustering- Mixture densities and identifiably, Maximum like	lihood	
estimates, application to normal mixtures, unsupervised Bayesian learning, data descri	iption and	
clustering, Hierarchical clustering, low dimensional representation of multidimension	al map	
Unit-6: Applications of deep learnin	5 hours	
Applications of deep learning to electronic health records and medical imaging data; A	pplications	
of deep learning to predicting protein structure and pharmacogenomics		

Suggested Readings:

- 1. Stuart Russell and Peter Norvig. 2009. Artificial Intelligence: A Modern Approach (3rd ed.). Prentice Hall Press, Upper Saddle River, NJ, USA.
- 2. Toby Segaran. 2007. Programming Collective Intelligence (First ed.). O'Reilly.
- 3. Tony J. Cleophas and Aeilko H. Zwinderman. 2015. Machine Learning in Medicine a Complete Overview. Springer

- 4. Sunila Gollapudi, S. 2016. Practical Machine Learning. Packt Publishing Ltd.
- 5. Peter Harrington. 2012. Machine Learning in Action. Manning Publications Co., Greenwich, CT, USA.

Name of The Course	Modeling of Physiological System				
Course Code	BMET 7003				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

Students will understand about the Modeling of Physiological System

Course Outcomes:

After completion of this course work students able to

CO1	Understand the Basic Concepts of Physiological System
CO2	Understand the Equivalent circuit model
CO3	Understand the Linear Model
CO4	Understand the Modelling of Blood flow and Urine formation
CO5	Understand about the Cardio-Pulmonary Modelling
CO6	Analyze the Eye Movement Model

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Course Contents

Unit-1: Basic Concepts of Physiological System	7 hours	
Basic Concepts of Physiological System: Introduction to physiological system and mathematical		
modelling of physiological system The technique of mathematical modeling, classification of		
models-black box & building block, characteristics of models. Purpose of physiological modeling		
and signal analysis, linearization of nonlinear models. Engineering system and physiological		
system, System variables & properties- Resistance, Compliance & their analogy. Time invariant		
and time varying systems for physiological modeling.		
Unit-2: Equivalent circuit model	7 hours	
Equivalent circuit model: Electromotive, resistive and capacitive properties of cell membrane,		
change in membrane potential with distance, voltage clamp experiment and Hodgkin and Huxley's		

model of action potential, the voltage dependent membrane constant and simulation of the model, model for strength-duration curve, model of the whole neuron Unit-3: Linear Model 7 hours Linear Model: Respiratory mechanics & muscle mechanics, Huxley model of isotonic muscle contraction, modeling of EMG, motor unit firing: amplitude measurement, motor unit & frequency analysis. Unit-4: Modelling of Blood flow and Urine formation 7 hours Modelling of Blood flow and Urine formation: Electrical analog of blood vessels, model of systematic blood flow, model of coronary circulation, transfer of solutes between physiological compartments by fluid flow, counter current model of urine formation, model of Henle's loop Unit-5: Cardio-Pulmonary Modelling 7 hours Cardio-Pulmonary Modelling: Cardiovascular system and pulmonary mechanics modelling and simulation, Model of Cardiovascular Variability, Model of Circadian Rhythms Unit-6: Eye Movement Model 5 hours Eye Movement Model: Types of Eye movement, Eye movement system and Wetheimer's saccade eye model. Robinson's Model, Oculomotor muscle model, Linear Reciprocal Innervations Oculomotor Model

Suggested Readings:

1. Endarle, Blanchard & Bronzino, Introduction to Biomedical Engg., Academic press.

2. Suresh.R.Devasahayam, Signals & Systems in Biomedical Engineering, Kluwer Academic/ Plenum Publishers.

- 3. V.Z. Marmarelis, Advanced methods of physiological modeling, Plenum Press.
- 4. J. Candy, Signal Processing: The Model Based approach, Mc. Graw Hill.
- 5. L.Stark, Neurological Control System, Plenum Press.
- 6. R.B. Stein, Nerve and Muscle, Plenum Press.

Name of The Course	Hospital and Healthcare Administration				
Course Code	BMET 7004				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

The students will be familiarized with to know about Indian healthcare system: The Indian healthcare sector is expanding rapidly, with an estimated market value of US\$ 280 billion by 2020.

This course will provide strategic insights and business skills for those working across the worldwide health sector.

Course Outcomes

On completion of this course the students will be able to understand

School of Biomedical Sciences

Basic concepts of Health, Natural history of disease and role of hospitals to offer various
levels of care
Introduction to Hospital Management, Concepts of Healthcare industry, Department and
organization structure of different types of hospitals
Hospital's Department, Supportive and Ancillary service Departments
Basics of Drug Management, Computerized Drug management system
Procurement of Drugs, Procedure of drug indenting
Analyze the Health Systems in India

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test (ETE)	Total Marks
20	30	50	100

Course Content

Unit-1: Basic Concepts of Health 7 hours
Concept of health & disease and well-being, Prevention aspect of diseases, Dynamics of disease
transmission, Changing pattern of diseases, Common pathological conditions, Basic concepts of
interpretation of investigations reports
Unit-2: Introduction to Hospital Management7 hours
Concepts of Healthcare industry and its ever-changing character, terminal planning, design and
operation, Concept of hospitals, space required for separate functions, overview, design & planning
of different types of hospitals, Problems and constraints in hospitals.
Unit-3: Deparmentation in Hospital 6 hours
Organization, Structure, Vertical and Horizontal, Clinical and Non- Clinical, Supportive and
Ancillary service Departments, Department and organization structure of different types of hospitals.
Unit-4 : Basics of Drug Management 7 hours
Drug Management, Hospital Pharmacy License and Drug License, Narcotics drug storage, Pharmacy
billings, Computerized Drug management system, Rational use of Drugs and Prescription Audits,
Spurious Drugs, Banned Drugs
Unit-5: Procurement of Drugs 6 hours
Purchase of drugs and other consumable materials, Procedure of drug indenting, On time drug
dispensing inventory control, Methods of ordering - two bin system (lead time, buffer stock, reorder
level) cyclic system
Unit-6 Health Systems in India 7 hours
Health planning in India including various committees and National Health Policy and Health Goals
set from time to time. Organised sector with reference to Centre, State, District and Block level
structures and local bodies and Panchayati Raj Organisation and functions of community health
centres and Primary Health Centres (PHCs). Health Manpower, Primary Health care and concept,
Alternative systems of medicine, like Ayurveda, Homeopathy, etc. Holistic Approach Non-
Governmental Organisations (NGOs) and Private Voluntary Organisations (PVOs). Unorganized
Sector

Suggested Readings:

- 1. Hospital Management: Principle, Theory and Practice by Amit Virmani
- 2. Hospital Management: An Evaluation by A.K. Malhotra
- 3. Principles of Hospital Administration & Planning: B.M. Sakharkar (Jaypee)

Name of The Course	Fundamentals of Clinic	al Resea	rch		
Course Code	BMET 7005				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives

1. Students will be exposed to Clinical Research and their requirements, Pharmaceutical Industry, Bioavailability and Bioequivalence Studies.

Course Outcomes

CO1	Historical Aspects of clinical research, clinical research terminologies
CO2	Phases of Clinical Trial and Types of Clinical Trial including Virtual Clinical Trials
CO3	Pharmaceutical Industry and concepts of Intellectual Property Rights
CO4	Modules of International Conference on Hormonization (Quality, Safety, Efficacy and
04	Miscellaneous) and E6 Overview
CO5	Drug Regulation and Evidence based medicine
CO6	Analysis of Evidence-based medicine

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term (MTE)	Exam	End Term (ETE)	Exam	Total Marks
20	30		50		100

Course Content:

7 Hours Overview, Opportunities & Career options in Clinical Research, Glossary of GCP. Historical Aspects of clinical research, Brief description of different phases, Stakeholders in clinical research, Need/Area for clinical research.

Unit-2 Phases and Types of Clinical Trials Hours

Unit I: Basic Introduction to Clinical Research

Introduction to Clinical Trials – Phases of Clinical Trials, Types of Clinical Trials, Randomized/Non randomized Clinical Trial, Virtual-clinical trials, Drug discovery and development. Unit-3 Pharmaceutical Industry & globalization 7 Hours

Overview of global and local players, Intellectual Property Rights: Introduction, Scope, Objectives and concepts of IPR, Tangible & Intangible property, scope & nature of patents, copyrights, trademark, Indian Patent Act 1970, practical aspects of patent filing. 7

Unit-4: ICH Introduction

Hours

ICH Introduction, Origin, Organization, Structure, Modules of ICH (Quality, Safety, Efficacy and Miscellaneous). E6 Overview

5

Unit-5: Introduction to Indian GCP and ICMR Hours

Indian- good clinical practice, Overview of ICMR

Unit-6: Evidence-based medicine

Need for evidence based approach in making decisions in family medicine; difference between evidence based medicine and evidence based health care; classification of evidence – information levels; 5 steps process for use of evidence oriented approach in family medicine

Suggested Reading

- 1. Indian GCP Guideline.
- 2. NDCT 2019
- 3. Design and Analysis of Clinical Trials: Concepts and Methodologies, 3rd Edition. SheinChung Chow, Jen-Pei Liu. Publisher: Wiley.
- 4. Principles and Practice of Pharmaceutical Medicine, 3rd Edition. Lionel D. Edwards, Anthony W. Fox, Peter D. Stonier. Publisher: Wiley-Blackwell
- Methodology of Clinical Drug Trials, 2nd Edition. Spriet A., Dupin-Spriet T., Simon P. Publisher: 5. Karger

Elective-V

Name of The Course	Introduction to Bioinformatics				
Course Code	BMET 7006				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives: Students are able to understand the basic concept of bioinformatics.

Course Outcomes

CO1	Describe the Introduction of Computer Fundamentals
CO2	It Interpret the Introduction of Bioinformatics and Biological Databases
CO3	Demonstrate Sequence Alignments, Phylogeny and Phylogenetic trees
CO4	Evaluate Genome organization and analysis
CO5	EvaluateProtein Structure Predictions
CO6	Analyze the Biomolecular Simulations

Continuous Assessment Pattern

Internal Assessment	Mid Term Test	End Term Test	Total Marks
(IA)	(MTE)	(ETE)	
20	30	50	100

Course Content:

Unit-1 Introduction To Computer Fundamentals	7 hours
RDBMS - Definition of relational database, Mode of data transfer (FTP, SFTP, SCP), adva	intage of
encrypted data transfer.	
Unit-2 Introduction To Bioinformatics And Biological Databases	7 hours
Biological databases - nucleic acid, genome, protein sequence and structure, gene ex	pression
databases, Database of metabolic pathways, Mode of data storage - File formats - FASTA,	Genbank
and Uniprot, Data submission & retrieval from NCBI, EMBL, DDBJ, Uniprot, PDB.	
Unit-3 Sequence Alignments, Phylogeny And Phylogenetic Trees	7 hours
Local and Global Sequence alignment, pairwise and multiple sequence alignment. Sco	oring an
alignment, scoring matrices, PAM & BLOSUM series of matrices. Types of phylogene	tic trees,
Different approaches of phylogenetic tree construction -UPGMA, Neighbour joining, M	Iaximum
Parsomony, Maximum likelihood.	
Unit-4 Genome Organization And Analysis	7
hours	
Diversity of Genomes: Viral, prokaryotic & eukaryotic genomes; Genome, transcriptome, p	roteome,
2-D gel electrophoresis, Maldi Toff spectroscopy; Major features of completed genomes	s: <i>E.coli</i> ,

S.cerevisiae, Arabidopsis, and Human.

Unit-5 Protein Structure Predictions

hours

Hierarchy of protein structure - primary, secondary and tertiary structures, modelling; Structural Classes, Motifs, Folds and Domains; Protein structure prediction in presence and absence of structure template; Energy minimizations and evaluation by Ramachandran plot Protein structure and rational drug design.

Unit-6 Biomolecular Simulations

5 hours

7

Force field and energy landscape; Minimization and alogrithms; Molecular dynamics; Free energy calculations; Membrane simulations

Suggested Readings:

- 1. Saxena Sanjay (2003) A First Course in Computers, Vikas Publishing House
- 2. Pradeep and Sinha Preeti (2007) Foundations of Computing, 4th ed., BPB Publications
- 3. Lesk M.A.(2008) Introduction to Bioinformatics . Oxford Publication, 3rd International Student Edition
- 4. Rastogi S.C., Mendiratta N. and Rastogi P. (2007) Bioinformatics: methods and applications, genomics, proteomics and drug discovery, 2nd ed. Prentice Hall India Publication
- 5. Primrose and Twyman (2003) Principles of Genome Analysis & Genomics. Blackwell

Name of The Course	Molecular Diagnostics & Therapeutics				
Course Code	BMET 7007				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

Students will understand about the tools and techniques used in the molecular diagnosis & Therapeutics.

Course Outcomes:

After completion of this course work students able to

CO1	Understand the basic concepts of host pathogen interactions and Biomarkers
CO2	Understand the biochemical based diagnosis.
CO3	Understand the DNA based diagnosis
CO4	Understand the protein based diagnosis
CO5	Understand the Cellular therapy
CO6	Understand about the Recombinant therapy & Immunotherapy

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test		Total Marks	
		(ETE)			
20	30	50		100	

Course Content:

Biomarkers- types and applications; Host pathogen interactions in disease process; Protect immune response in Bacterial, Viral and Parasitic diseases; Cancer; Inappropriate Immune respon Disease pathology and clinical spectrum; Clinical diagnosis of diseases; Molecular Genetics of host and the pathogenUnit-2: Biochemical based diagnosis7 hoursBiochemical disorders; Molecular techniques for analysis of these disorders; Assays for Diagnosis of inherited diseases; Antibody based diagnosis; Monoclonal antibodies as diagnos reagents; Production of monoclonal antibodies with potential for diagnosis; Diagnosis of bacter viral and parasitic diseases by using; ELISA and Western blot.Unit-3: DNA based diagnosis7 hoursAptamers; DNA sequencing and diagnosis; PCR and Array based techniques in diagnosis; Sin nucleotide polymorphism and disease association; Two dimensional gene scanning.5 hoursUnit-4: Protein based diagnosis5 hoursProtein Micro array; Present methods for diagnosis of Specific diseases like Tuberculosis, Mala and AIDS; Ethics in Molecular Diagnosis7 hoursUnit-5: Cellular therapy7 hoursCellular therapy; Stem cells: definition, properties and potency of stem cells; Sources: embryo and adult stem cells; Concept of tissue engineering; Role of scaffolds; Role of growth factors; R of adult and embryonic stem cells; Clinical applications; Ethical issues Unit-6: Recombinant therapy & Immunotherapy7 hours					
immune response in Bacterial, Viral and Parasitic diseases; Cancer; Inappropriate Immune respon Disease pathology and clinical spectrum; Clinical diagnosis of diseases; Molecular Genetics of host and the pathogen 7 hours Biochemical based diagnosis 7 hours Biochemical disorders; Molecular techniques for analysis of these disorders; Assays for Diagnosis of inherited diseases; Antibody based diagnosis; Monoclonal antibodies as diagnos reagents; Production of monoclonal antibodies with potential for diagnosis; Diagnosis of bacter viral and parasitic diseases by using; ELISA and Western blot. Unit-3: DNA based diagnosis 7 hours Aptamers; DNA sequencing and diagnosis; PCR and Array based techniques in diagnosis; Sin nucleotide polymorphism and disease association; Two dimensional gene scanning. Unit-4: Protein based diagnosis 5 hours Protein Micro array; Present methods for diagnosis of Specific diseases like Tuberculosis, Mala and AIDS; Ethics in Molecular Diagnosis Unit-5: Cellular therapy 7 hours Cellular therapy; Stem cells: definition, properties and potency of stem cells; Sources: embryo and adult stem cells; Concept of tissue engineering; Role of scaffolds; Role of growth factors; R of adult and embryonic stem cells; Clinical applications; Ethical issues Unit-6: Recombinant therapy & Immunotherapy 7 hours	Unit-1: Host pathogen interactions and Biomarkers	7 hours			
Disease pathology and clinical spectrum; Clinical diagnosis of diseases; Molecular Genetics of host and the pathogen 7 hours Biochemical based diagnosis 7 hours Biochemical disorders; Molecular techniques for analysis of these disorders; Assays for Diagnosis of inherited diseases; Antibody based diagnosis; Monoclonal antibodies as diagnos reagents; Production of monoclonal antibodies with potential for diagnosis; Diagnosis of bacter viral and parasitic diseases by using; ELISA and Western blot. Unit-3: DNA based diagnosis 7 hours Aptamers; DNA sequencing and diagnosis; PCR and Array based techniques in diagnosis; Sin nucleotide polymorphism and disease association; Two dimensional gene scanning. Unit-4: Protein based diagnosis 5 hoo Protein Micro array; Present methods for diagnosis of Specific diseases like Tuberculosis, Mala and AIDS; Ethics in Molecular Diagnosis Unit-5: Cellular therapy 7 hour Cellular therapy; Stem cells: definition, properties and potency of stem cells; Sources: embryo and adult stem cells; Concept of tissue engineering; Role of scaffolds; Role of growth factors; R of adult and embryonic stem cells; Clinical applications; Ethical issues Unit-6: Recombinant therapy & Immunotherapy 7 hours					
host and the pathogen7 hoursUnit-2: Biochemical based diagnosis7 hoursBiochemical disorders; Molecular techniques for analysis of these disorders; Assays for Diagnosis of inherited diseases; Antibody based diagnosis; Monoclonal antibodies as diagnos reagents; Production of monoclonal antibodies with potential for diagnosis; Diagnosis of bacter viral and parasitic diseases by using; ELISA and Western blot.Unit-3: DNA based diagnosis7 hoursAptamers; DNA sequencing and diagnosis; PCR and Array based techniques in diagnosis; Sin nucleotide polymorphism and disease association; Two dimensional gene scanning.Unit-4: Protein based diagnosis5 hoursProtein Micro array; Present methods for diagnosis of Specific diseases like Tuberculosis, Mala and AIDS; Ethics in Molecular Diagnosis7 hoursUnit-5: Cellular therapy7 hourCellular therapy; Stem cells: definition, properties and potency of stem cells; Sources: embryo and adult stem cells; Concept of tissue engineering; Role of scaffolds; Role of growth factors; R of adult and embryonic stem cells; Clinical applications; Ethical issues7 hoursUnit-6: Recombinant therapy & Immunotherapy7 hours					
Unit-2: Biochemical based diagnosis7 hoursBiochemical disorders; Molecular techniques for analysis of these disorders; Assays for Diagnosis of inherited diseases; Antibody based diagnosis; Monoclonal antibodies as diagnos reagents; Production of monoclonal antibodies with potential for diagnosis; Diagnosis of bacter viral and parasitic diseases by using; ELISA and Western blot.7 hoursUnit-3: DNA based diagnosis7 hoursAptamers; DNA sequencing and diagnosis; PCR and Array based techniques in diagnosis; Sin nucleotide polymorphism and disease association; Two dimensional gene scanning.5 hoursUnit-4: Protein based diagnosis5 hoursProtein Micro array; Present methods for diagnosis of Specific diseases like Tuberculosis, Mala and AIDS; Ethics in Molecular Diagnosis7 hoursUnit-5: Cellular therapy7 hoursCellular therapy; Stem cells: definition, properties and potency of stem cells; Sources: embryo and adult stem cells; Concept of tissue engineering; Role of scaffolds; Role of growth factors; R of adult and embryonic stem cells; Clinical applications; Ethical issues7 hoursUnit-6: Recombinant therapy & Immunotherapy7 hours	Disease pathology and clinical spectrum; Clinical diagnosis of diseases; Molecular Gen	etics of the			
Biochemical disorders; Molecular techniques for analysis of these disorders; Assays for Diagnosis of inherited diseases; Antibody based diagnosis; Monoclonal antibodies as diagnos reagents; Production of monoclonal antibodies with potential for diagnosis; Diagnosis of bacter viral and parasitic diseases by using; ELISA and Western blot. Unit-3: DNA based diagnosis7 hoursUnit-3: DNA based diagnosis7 hoursAptamers; DNA sequencing and diagnosis; PCR and Array based techniques in diagnosis; Sin nucleotide polymorphism and disease association; Two dimensional gene scanning. Unit-4: Protein based diagnosis5 horProtein Micro array; Present methods for diagnosis of Specific diseases like Tuberculosis, Mala and AIDS; Ethics in Molecular Diagnosis7 hoursUnit-5: Cellular therapy7 hourCellular therapy; Stem cells: definition, properties and potency of stem cells; Sources: embryo and adult stem cells; Concept of tissue engineering; Role of scaffolds; Role of growth factors; R of adult and embryonic stem cells; Clinical applications; Ethical issuesUnit-6: Recombinant therapy & Immunotherapy7 hours	host and the pathogen				
Diagnosis of inherited diseases; Antibody based diagnosis; Monoclonal antibodies as diagnosis reagents; Production of monoclonal antibodies with potential for diagnosis; Diagnosis of bacter viral and parasitic diseases by using; ELISA and Western blot. Unit-3: DNA based diagnosis 7 hours Aptamers; DNA sequencing and diagnosis; PCR and Array based techniques in diagnosis; Sin nucleotide polymorphism and disease association; Two dimensional gene scanning. Unit-4: Protein based diagnosis 5 hor Protein Micro array; Present methods for diagnosis of Specific diseases like Tuberculosis, Mala and AIDS; Ethics in Molecular Diagnosis Unit-5: Cellular therapy 7 hour Cellular therapy; Stem cells: definition, properties and potency of stem cells; Sources: embryo and adult stem cells; Concept of tissue engineering; Role of scaffolds; Role of growth factors; R of adult and embryonic stem cells; Clinical applications; Ethical issues Unit-6: Recombinant therapy & Immunotherapy 7 hour	Unit-2: Biochemical based diagnosis	7 hours			
reagents; Production of monoclonal antibodies with potential for diagnosis; Diagnosis of bacter viral and parasitic diseases by using; ELISA and Western blot. Unit-3: DNA based diagnosis 7 hours Aptamers; DNA sequencing and diagnosis; PCR and Array based techniques in diagnosis; Sin nucleotide polymorphism and disease association; Two dimensional gene scanning. Unit-4: Protein based diagnosis 5 hour Protein Micro array; Present methods for diagnosis of Specific diseases like Tuberculosis, Mala and AIDS; Ethics in Molecular Diagnosis Unit-5: Cellular therapy 7 hour Cellular therapy; Stem cells: definition, properties and potency of stem cells; Sources: embryo and adult stem cells; Concept of tissue engineering; Role of scaffolds; Role of growth factors; R of adult and embryonic stem cells; Clinical applications; Ethical issues Unit-6: Recombinant therapy & Immunotherapy 7 hour 7 hour	Biochemical disorders; Molecular techniques for analysis of these disorders; Assa	s for the			
viral and parasitic diseases by using; ELISA and Western blot.7 hoursUnit-3: DNA based diagnosis7 hoursAptamers; DNA sequencing and diagnosis; PCR and Array based techniques in diagnosis; Sin7 hoursnucleotide polymorphism and disease association; Two dimensional gene scanning.1Unit-4: Protein based diagnosis5 hoursProtein Micro array; Present methods for diagnosis of Specific diseases like Tuberculosis, Mala5 hoursand AIDS; Ethics in Molecular Diagnosis7 hoursUnit-5: Cellular therapy7 hoursCellular therapy; Stem cells: definition, properties and potency of stem cells; Sources: embryo7 hoursand adult stem cells; Concept of tissue engineering; Role of scaffolds; Role of growth factors; R6 adult and embryonic stem cells; Clinical applications; Ethical issuesUnit-6: Recombinant therapy & Immunotherapy7 hours	Diagnosis of inherited diseases; Antibody based diagnosis; Monoclonal antibodies as	diagnostic			
Unit-3: DNA based diagnosis7 hoursAptamers; DNA sequencing and diagnosis; PCR and Array based techniques in diagnosis; Sin nucleotide polymorphism and disease association; Two dimensional gene scanning.7 hoursUnit-4: Protein based diagnosis5 hoursProtein Micro array; Present methods for diagnosis of Specific diseases like Tuberculosis, Mala and AIDS; Ethics in Molecular Diagnosis7 hoursUnit-5: Cellular therapy7 hoursCellular therapy; Stem cells: definition, properties and potency of stem cells; Sources: embryo and adult stem cells; Concept of tissue engineering; Role of scaffolds; Role of growth factors; R of adult and embryonic stem cells; Clinical applications; Ethical issues7 hoursUnit-6: Recombinant therapy & Immunotherapy7 hours	reagents; Production of monoclonal antibodies with potential for diagnosis; Diagnosis of	of bacterial,			
Unit-3: DNA based diagnosis7 hoursAptamers; DNA sequencing and diagnosis; PCR and Array based techniques in diagnosis; Sin nucleotide polymorphism and disease association; Two dimensional gene scanning.7 hoursUnit-4: Protein based diagnosis5 hoursProtein Micro array; Present methods for diagnosis of Specific diseases like Tuberculosis, Mala and AIDS; Ethics in Molecular Diagnosis7 hoursUnit-5: Cellular therapy7 hoursCellular therapy; Stem cells: definition, properties and potency of stem cells; Sources: embryo and adult stem cells; Concept of tissue engineering; Role of scaffolds; Role of growth factors; R of adult and embryonic stem cells; Clinical applications; Ethical issues7 hoursUnit-6: Recombinant therapy & Immunotherapy7 hours	viral and parasitic diseases by using; ELISA and Western blot.				
nucleotide polymorphism and disease association; Two dimensional gene scanning. Unit-4: Protein based diagnosis 5 hor Protein Micro array; Present methods for diagnosis of Specific diseases like Tuberculosis, Mala and AIDS; Ethics in Molecular Diagnosis 5 hor Unit-5: Cellular therapy 7 hour Cellular therapy; Stem cells: definition, properties and potency of stem cells; Sources: embryo and adult stem cells; Concept of tissue engineering; Role of scaffolds; Role of growth factors; R of adult and embryonic stem cells; Clinical applications; Ethical issues Unit-6: Recombinant therapy & Immunotherapy 7 hour	Unit-3: DNA based diagnosis	7 hours			
Unit-4: Protein based diagnosis5 horProtein Micro array; Present methods for diagnosis of Specific diseases like Tuberculosis, Mala and AIDS; Ethics in Molecular Diagnosis7 hourUnit-5: Cellular therapy7 hourCellular therapy; Stem cells: definition, properties and potency of stem cells; Sources: embryo and adult stem cells; Concept of tissue engineering; Role of scaffolds; Role of growth factors; R of adult and embryonic stem cells; Clinical applications; Ethical issuesUnit-6: Recombinant therapy & Immunotherapy7 hour	Aptamers; DNA sequencing and diagnosis; PCR and Array based techniques in diagnosis; Single				
Unit-4: Protein based diagnosis5 horProtein Micro array; Present methods for diagnosis of Specific diseases like Tuberculosis, Mala and AIDS; Ethics in Molecular Diagnosis7 hourUnit-5: Cellular therapy7 hourCellular therapy; Stem cells: definition, properties and potency of stem cells; Sources: embryo and adult stem cells; Concept of tissue engineering; Role of scaffolds; Role of growth factors; R of adult and embryonic stem cells; Clinical applications; Ethical issuesUnit-6: Recombinant therapy & Immunotherapy7 hour	nucleotide polymorphism and disease association; Two dimensional gene scanning.	C			
and AIDS; Ethics in Molecular Diagnosis7 hourUnit-5: Cellular therapy7 hourCellular therapy; Stem cells: definition, properties and potency of stem cells; Sources: embryo7 hourand adult stem cells; Concept of tissue engineering; Role of scaffolds; Role of growth factors; R6 adult and embryonic stem cells; Clinical applications; Ethical issuesUnit-6: Recombinant therapy & Immunotherapy7 hour	Unit-4: Protein based diagnosis	5 hours			
Unit-5: Cellular therapy7 hourCellular therapy; Stem cells: definition, properties and potency of stem cells; Sources: embryoand adult stem cells; Concept of tissue engineering; Role of scaffolds; Role of growth factors; Rof adult and embryonic stem cells; Clinical applications; Ethical issues7 hourUnit-6: Recombinant therapy & Immunotherapy7 hour	Protein Micro array; Present methods for diagnosis of Specific diseases like Tuberculos	sis, Malaria			
Cellular therapy; Stem cells: definition, properties and potency of stem cells; Sources: embryo and adult stem cells; Concept of tissue engineering; Role of scaffolds; Role of growth factors; R of adult and embryonic stem cells; Clinical applications; Ethical issues Unit-6: Recombinant therapy & Immunotherapy 7 hour	and AIDS; Ethics in Molecular Diagnosis				
and adult stem cells; Concept of tissue engineering; Role of scaffolds; Role of growth factors; Rof adult and embryonic stem cells; Clinical applications; Ethical issuesUnit-6: Recombinant therapy & Immunotherapy7 hour	Unit-5: Cellular therapy	7 hours			
and adult stem cells; Concept of tissue engineering; Role of scaffolds; Role of growth factors; Rof adult and embryonic stem cells; Clinical applications; Ethical issuesUnit-6: Recombinant therapy & Immunotherapy7 hour	Cellular therapy; Stem cells: definition, properties and potency of stem cells; Sources:	embryonic			
of adult and embryonic stem cells; Clinical applications; Ethical issuesUnit-6: Recombinant therapy & Immunotherapy7 hour					
Unit-6: Recombinant therapy & Immunotherapy 7 hour					
		7 hours			
Recombinant therapy; Clinical applications of recombinant technology; Erythropoietin; Insu	Recombinant therapy; Clinical applications of recombinant technology; Erythropoiet	tin; Insulin			
analogs and its role in diabetes; Recombinant human growth hormone; Streptokinase and urokin					
in thrombosis; Recombinant coagulation factors; Immunotherapy; Monoclonal antibodies and th					
	•	interferons;			
Immunostimulants; Immunosupressors in organ transplants; Role of cytokine therapy in cance		in cancers;			
Vaccines: types, recombinant vaccines and clinical applications		,			

Suggested Readings:

- 1. Campbell, M.A and Heyer L.J., Discovering Genomics, Proteomics and Bioinformatics, 2nd Edition, CSHL Press, Pearson/Benzamin Cummings San Francisco, USA, 2007.
- 2. Andrew Read and Dian Donnai, New Clinical Genetics, Scion Publishing Ltd, Oxfordshire, UK, 2007.
- 3. James W Goding, Monoclonal antibodies: Principles and Practice, 3rd Edition, Academic Press, 1996.
- 4. Bernhard Palsson and Sangeeta N Bhatia, Tissue Engineering, 2nd Edition, Prentice Hall, 2004.
- 5. George Patrinos and Wilhelm Ansorage, Molecular Diagnostics, 1 st Edition, Academic Press, 2005.
- 6. Lela Buchingham and Maribeth L Flawsm, Molecular Diagnostics: Fundamentals, Methods and Clinical Applications, 1 st Edition, F A Davis Company, Philadelphia, USA, 2007.

Name of The Course	Major Project				
Course Code	BMEP 8051				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		0	0	24	12

Course Objectives:

Students will get exposure of Project work execution in the area of Biomedical Engineering.

Course Outcomes

On completion of this course the students will be able to

CO1	Formulate questions and to discover feasible solutions
CO2	Demonstrate individual initiative or group responsibility
CO3	Use resource materials to express ideas and talents
CO4	Design and execute the project work
CO5	Report the project work in terms of thesis

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Test (MTE)	End Term Test		Total Marks
		(ETE)		
60	00	240		300

Course Content

Six components are required for project completion: 1.Self-Management component

2. Written component 3. Research component 4. Oral component 5. Technological component 6. Visual component

This project work is to make the student acquainted with the Patient/Healthcare sector/ industrial/Medical Diagnosis and Therapeutics. After completion of the project they will have to submit dissertation report This project work or thesis presents a student's research results, describing the research with reference to relevant work done as part of the live project at a Hospital/Healthcare sector/Biomedical Companies with specific diseases, diagnosis and therapeutic or rehabilitation engineering. It will include a description of the methods of research considered, and those actually employed, and present the student's conclusions. The thesis is the student's own work and must be written by the student.

The Internal Layout of the project work or Thesis

The thesis is to be submitted in the following pattern,

- Title page;
- Declarations and Statements
- Author's declaration
- Acknowledgement
- Contents page;
- Table of contents
- List of tables
- List of figures
- Definitions or Abbreviations
- Summary (Abstract)
- Introduction
- Literature Review
- Materials and Methods
- Results & Discussion
- Conclusion and Future Prospectives
- List of references
- Index