GALGOTIAS UNIVERSITY

Email: admissions@galgotiasuniversity.edu.in Website: www.galgotiasuniversity.edu.in

COURSE BOOK SOME -2020 **Volume-I**

Curriculum and syllabus for SCHOOL OF **MECHANICAL ENGINEERING**

STULL F

FIC

CONTENTS

1.	B. Tech Mechanical Engineering	2
	B. Tech Automobile Engineering	
	M. Tech Automobile Engineering	
	M. Tech CAD/CAM	

Program: B.Tech.,

Mechanical Engineering

Scheme: 2020-2021

Vision

To be known as a premier department in mechanical engineering by synergizing teaching, learning and research to produce competent Mechanical Engineers with an exposure to interdisciplinary engineering knowledge.

Mission

MD1: Create an effective foundation in the field of production, design, thermal, industrial and automation engineering by imparting quality education.

MD2: Conduct interdisciplinary research leading to the delivery of innovative technologies through Problem and Research Based Learning.

MD3: Provide relevant industrial experience that instills the problem solving approach; integrate the product design to manufacturing life cycle management.

MD4: Prepare students for careers in academia and various industrial organization related to mechanical and allied engineering.

Program Educational Objectives

PEO1: Graduates of Mechanical Engineering shall be engineering professionals and innovators in core engineering, service industries or pursue higher studies.

PEO2: Graduates of Mechanical Engineering shall be competent in latest technologies by exploiting automation and smart manufacturing tools to address various industry 4.0 problems.

PEO3: Graduates of Mechanical Engineering shall leverage their imbibed skill through continuous working on technologies like drone and additive manufacturing knowledge to transform the society.

Program Specific Objectives

PSO1: Students are trained to perform tasks related to conversion of mechanical system to automatic system, integrating mechanical system to IoT and cloud based technologies.

PSO2: Students are practiced to use augmented reality / virtual reality along with different CAE tools for rapid prototyping and additive manufacturing.

Program Outcomes

- 1. **Engineering Knowledge** : Apply the knowledge of Mathematics, Science, and Engineering fundamentals, and an engineering specialization to solution of complex engineering problems.
- 2. **Problem analysis** : Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.

- 3. **Design/development of solutions** : Design of solutions for complex engineering problems and design of system components or processes that meet the specified needs with appropriate considerations of public health and safety, and cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems** : Use research based methods including design of experiments, analysis and interpretation of data and synthesis of information leading to logical conclusions.
- 5. **Modern tool usage** : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling complex engineering activities with an understanding of limitations.
- 6. **The engineer and society :**Apply reasoning within the contextual knowledge to access societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. Environment and sustainability : Understand the impact of the professional engineering solutions in the societal and environmental contexts, and demonstrate the knowledge of, and the need for sustainable developments.
- 8. Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.
- 9. **Individual and team work :**Function effectively as an individual independently and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication :**Communicate effectively on complex engineering activities with the engineering community and with society at large such give and receive clear instructions.
- 11. **Project management and finance :**Demonstrate knowledge and understanding of engineering management principles and apply those to one's own work as a member and leader of a team to manage projects in multidisciplinary environments.
- 12. Life-long Learning :Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Curriculum

		Semester 1							
Sl.	Course Code	Name of the Course						sment Pa	
No			L	Т	Р	С	IA	MTE	ETE
1	BEE01T1001	Energy Sources and Audit	1	0	0	1	20	50	100
-		Data Analytics (Excel and					20	50	100
2	BCS01T1001	Tableau)	1	0	0	1			
3	BCS01T1002	AI Fundamentals	2	0	0	2	20	50	100
4	DDC01T1001	Multivariable Calculus and Vector	2	0	0	2	20	50	100
4	BBS01T1001	calculus	3	0	0	3			
5	BCS01T1003	Programming for Problem Solving (C)	1	0	4	3	20	50	100
6	BLL01T1001	Communication Skill	3	0	0	3	20	50	100
7	BBS01T1002	Engineering Physics	2	0	0	2	20	50	100
8	BBS01P1002	Engineering Physics Lab	0	0	2	1	50	-	50
9	BEE01T1002	Bio Systems in Engineering	2	0	0	2	20	50	100
10	BEE01T1002	AC DC Circuits	2	0	2	3	20	50	100
11	BEE01T1001	Energy Sources and Audit	1	0	0	1	20	50	100
	2220111001	Total	18	0	8	22			100
		Semester II					1	1	
Sl	Course Code	Name of the Course					Assess	sment Pa	attern
No	Course Coue		L	Т	Р	С	IA	MTE	ETE
		Linear Algebra and Differential					20	50	100
1	BBS01T1003	Equations	2	0	0	2	20		100
2	BEE01T1004	Embedded Technology and IoT	1	0	2	2	20	50	100
3	BCE01P1001	Waste Management	0	0	2	1	50	-	50
4	BCE01P1002	Environmental Science	0	0	1	1	50	-	50
5	BLE01P1001	Liberal and Creative Arts	0	0	1	1	50	-	50
		Creativity, Innovation and			-	-	20	50	100
6	BSB01T1001	Entrepreneurship	1	0	2	2			
7	DC001D1004	Introduction to Python	0	0	2	1	50	-	50
7 8	BCS01P1004	Programming	02	0	2	1	20	50	100
8 9	BEE01T1005 BCS01T1005	Introduction to Digital System Data Structure Using C	$\frac{2}{2}$	0	22	3	20 20	50 50	100 100
9	BME01P1001	Digital Fabrication	$\frac{2}{0}$	0	$\frac{2}{2}$	<u> </u>	50		50
10	BME01P1001	Engineering Graphics	2	0	2	3	20	50	100
11	DIVILOIT 1002	Total	10	0	18	<u> </u>	20	50	100
		Semester III	10	v	10		l	I	
Sl	a a 1						Assess	sment Pa	attern
No	Course Code	Name of the Course	L	Т	Р	С	IA	MTE	ETE
1	BTME2001	Engineering Mechanics	3	0	0	3	20	50	100
2	BTME2002	Engineering Thermodynamics	3	0	0	3	20	50	100
3	BTME2003	Manufacturing Processes I	3	0	0	3	20	50	100
4	BTME2024	Material Science (PBL)	2	0	2	3	20	50	100
-		Functions of complex variables			_		20	50	100
5	MATH2001	and Transforms	3	0	0	3	20	50	100
	MA102001		3	U	0	3			
6		Industrial Economics and			6		20	50	100
	BTME2024	Management	3	0	0	3			
7		English Proficiency and Aptitude					50	_	50
,	SLBT2021	Building – 3	0	0	4	2	50		50

		Manufacturing Processes I									
8	BTME2004	Laboratory	0	0	2	1	50	-	50		
	DINE2004	Machine Drawing Laboratory	0	0	2	1					
9	BTME2005	(PBL)	0	0	4	2	50	-	50		
10	BTME2022	SKILL Lab (Solid Works)	0	0	2	1	50	_	50		
	-	Excel, PPT Training and Hobby	-	-							
11	BTME2023	class	0	0	2	1	50	-	50		
		Total	14	0	18	23					
	Semester IV										
SI	Course Code	C		sment Pa							
No	BTME2008	Name of the Course Mechanics of Material	L 3	T 0	P 0	C 3	IA 20	MTE 50	ETE		
$\frac{1}{2}$	BTME2008 BTME2009	Fluid Mechanics (PBL)	2	0	2	3	20 20	50 50	100 100		
2	DIME2009	Manufacturing Processes II and	Z	0	2	3	20	50	100		
3	BTME2010	Manufacturing Trocesses II and Metrology	3	0	0	3	20	50	100		
4	MATH2003	Probability and Statistics	3	0	0	3	20	50	100		
4 5	BTME2020	Microeconomics	3	0	0	3	20	50	100		
	211112020	AI & Machine Learning using	5			5		50			
6	BTME2017	Python	0	0	4	2	50	-	50		
		Spoken English, Empower									
7	SLBT2002	(Cambridge university program)	0	0	4	2	50	-	50		
8	BTME2012	Mechanics of Material Laboratory	0	0	2	1	50	-	50		
0		Manufacturing Processes II and					50		50		
9	BTME2013	Metrology Laboratory	0	0	2	1	50	-	50		
10	BTME3023	Additive Manufacturing	0	0	4	2	50	-	50		
11	BTME3022	Sensors & Transducers	1	0	0	1	20	50	100		
		Total	15	0	18	24					
		Semester V						(D			
Sl No	Course Code	Name of the Course	L	Т	Р	С	Asses: IA	sment Pa	ETE		
1	BTME3021	Applied Thermodynamics	3	0	0	3	20		100		
2	BTME3002	Kinematics of Machines	3	0	0	3	20	50	100		
3	BTME3025	Machine Design (PBL)	2	0	2	3	20	50	100		
4	BTME3026	Automobile Engineering	2	0	0	2	20	50	100		
5	BTME3003	Heat and Mass Transfer	3	0	0	3	20	50	100		
6	PE01	Program Elective - 1	3	0	0	3	20	50	100		
7	PE02	Program Elective - 2	3	0	0	3	20	50	100		
8	SLBT3001	Campus to Corporate	0	0	4	2	50	-	50		
		Applied Thermodynamics and	~			_					
9	BTME3004	HMT Lab	0	0	2	1	50	-	50		
		Structural and Fluid flow Analysis									
10	BTME3024	Lab	0	0	2	1	50	-	50		
		Total	18	0	12	24					
		Semester VI									
SI	Course Code	Name of the Course		m	D	~		sment Pa			
No 1	BTME3067		L 3	T 0	P 0	<u>C</u> 3	IA 20	MTE 50	ETE		
1	DINESU0/	Refrigeration and Air Conditioning	3	U	U	3	20	50	100		

			-	-	-	-	1	1	
2	BTME3008	Dynamics of Machines	3	0	0	3	20	50	100
3	BTME3009	CAM and Automation	3	0	0	3	20	50	100
4	BTME3016	Mechatronics	3	0	0	3	20	50	100
5		Computer applications in					20	50	100
5	MATH2002	Mechanical Engineering	2	0	2	3	20	50	100
6	PE03	Program Elective - 3	3	0	0	3	20	50	100
7	PE04	Program Elective - 4	3	0	0	3	20	50	100
8	PE05	Program Elective - 5	3	0	0	3	20	50	100
9	BTME3010	Dynamics of Machines Laboratory	0	0	2	1	50	-	50
		Total	23	0	4	25			
	Semester VII								
Sl	Course Code	Name of the Course					Assess		
No	Course Coue	Name of the Course	L	Т	Р	С	IA	MTE	ETE
1	BTME4001	Energy Systems and Technologies	3	0	0	3	20	50	100
2		Optimization Techniques and					20	50	100
2	BTME4005	Applications	2	0	0	2	20	50	100
3	BTME4010	Project Management	1	0	0	1	20	50	100
4		Quality and Reliability					20	50	100
4	BTME4006	Engineering	2	0	0	2	20	50	100
5	BTME4003	Energy systems Laboratory	0	0	2	1	50	-	50
6	BTME4004	Comprehensive Examination	0	0	2	1	50	-	50
7	BTME4008	Industrial Internship	0	0	0	2	50	-	50
8	BTME4991	Capstone Project- Phase I	-	-	-	2	50	-	50
		Total	8	0	4	14			
		Semester VII	[
SI	a ~ .							essment	
No		Name of the Course		m	D	C	Patt	1	DUE
	BTME4992	Constana Project, Phase II	L	T	Р	<u>С</u> 9	IA	MTE	ETE
1	BIME4992	Capstone Project- Phase II	-	-	-		50	-	50
		Total				9			

List of Electives

Elective- (Automobile and Vehicle Design)

Sl	Course Code	Name of the Electives					Assess	sment Pa	attern
No	Course Coue	Name of the Electives	L	Τ	Р	С	IA	MTE	ETE
1		Automotive Chassis and Body					20	50	100
1	BTME3101	Engineering	3	0	0	3	20	50	100
2		Transmission system theory and					20	50	100
Z	BTME3102	design	3	0	0	3	20	30	100
3	BTME3103	Electric and Hybrid Vehicles	3	0	0	3	20	50	100
4	BTME3104	Aerodynamic Design of Vehicles	3	0	0	3	20	50	100
5	BTME3105	Hydraulics and Pneumatics	3	0	0	3	20	50	100
6		Alternative Fuels & Energy					20	50	100
0	BTME3106	Systems	3	0	0	3	20	50	100
7	BTME3107	Automotive Engine & Emission	3	0	0	3	20	50	100

8	BTME3108	Engine Design	3	0	0	3	20	50	100
9	BTME3109	Simulation of automobile system	3	0	0	3	20	50	100
10	BTME3110	Automotive Safety	3	0	0	3	20	50	100

Elective-(Energy Engineering)

Sl	Course Code	Name of the Electives					Assess	sment Pa	ttern
No	Course Coue	Name of the Electives	L	Т	Р	С	IA	MTE	ETE
1		Energy conservation and					20	50	100
1	BTME3201	Management	3	0	0	3	20	30	100
2	BTME3202	Renewable energy systems	3	0	0	3	20	50	100
3		Energy system modelling and					20	50	100
3	BTME3203	Analysis	3	0	0	3	20	30	100
4	BTME3204	Solar Energy Systems	3	0	0	3	20	50	100
5	BTME3205	Energy Conservation Techniques	3	0	0	3	20	50	100
6		Optimization of various energy					20	50	100
0	BTME3206	parameters	3	0	0	3	20	50	100
7	BTME3207	Energy Engineering and reliability	3	0	0	3	20	50	100

Elective- (Smart Manufacturing)

Sl	Course	Name of the Electives					Asses	sment Pa	ttern
No	Code	Name of the Electives	L	Т	Р	С	IA	MTE	ETE
1	BTME3301	Earth, Environment & Design	3	0	0	3	20	50	100
2		Measurements and Data Analysis					20	50	100
Z	BTME3302	Practice	3	0	0	3	20	30	100
3		Operations and Supply chain					20	50	100
3	BTME3303	Management	3	0	0	3	20	30	100
4	BTME3304	Sensors and Controls	3	0	0	3	20	50	100
5		Machine to Machine Communication					20	50	100
3	BTME3305	Practice	3	0	0	3	20	50	100
6		Entrepreneurship and Management					20	50	100
0	BTME3306	Functions	3	0	0	3	20	50	100
7	BTME3307	Robotics and Automation	3	0	0	3	20	50	100
8	BTME3308	Special Manufacturing Processes	3	0	0	3	20	50	100
9		Computer Aided Design and					20	50	100
7	BTME3309	Manufacturing	3	0	0	3	20	50	100
10	BTME3310	Data Analytics	3	0	0	3	20	50	100

Elective- (Engineering Design)

Sl	Course Code	rse Code Name of the Electives					Assessment Pattern			
No			L	Т	Р	С	IA	MTE	ETE	
1	BTME3401	Tool Design	3	0	0	3	20	50	100	

2	BTME3402	Mechanical Vibrations	3	0	0	3	20	50	100
3	BTME3403	Design of Jigs and Fixtures	3	0	0	3	20	50	100
4	BTME3404	Product Design and Development	3	0	0	3	20	50	100
5	BTME3405	Finite Element Analysis	3	0	0	3	20	50	100
6	BTME3406	Robust Design	3	0	0	3	20	50	100
7	BTME3407	Design of transmission systems	3	0	0	3	20	50	100
8	BTME3408	Design of Experiments	3	0	0	3	20	50	100

Elective- (Industrial Engineering)

Sl	Course Code	Name of the Electives					Assess	sment Pa	attern
No	Course Coue	Name of the Electives	L	Т	Р	С	IA	MTE	ETE
1		Analysis and Control of					20	50	100
1	BTME3501	Manufacturing Systems	3	0	0	3	20	50	100
2	BTME3502	Quality Engineering	3	0	0	3	20	50	100
3	BTME3503	Work Design and Ergonomics	3	0	0	3	20	50	100
4	BTME3504	Facilities Planning	3	0	0	3	20	50	100
5	BTME3505	Value Engineering	3	0	0	3	20	50	100
6	BTME3506	Financial Management	3	0	0	3	20	50	100
7	BTME3507	Supply Chain Management	3	0	0	3	20	50	100
8	BTME3508	Sequencing and Scheduling	3	0	0	3	20	50	100

Elective-(Pipeline Engineering)

Sl	Course Code	Name of the Electives					Assess	sment Pa	ttern
No	Course Coue	Ivanie of the Electives	L	Т	Р	С	IA	MTE	ETE
1		Pipeline Project Evaluation and Ma					20	50	100
1	BTME3601	nagement	3	0	0	3	20	50	100
2	BTME3602	Pipeline Engineering: Design	3	0	0	3	20	50	100
3	BTME3603	Pipeline Engineering: Construction	3	0	0	3	20	50	100
4		Pipeline Engineering: Operations &					20	50	100
4	BTME3604	Maintenance	3	0	0	3	20	30	100
5	BTME3605	Pipeline Risk Management	3	0	0	3	20	50	100
6		Pipeline System Automation &					20	50	100
6	BTME3606	Control	3	0	0	3	20	50	100
7		Pipeline Economics, Regulations &					20	50	100
7	BTME3607	Policies	3	0	0	3	20	50	100
8	BTME3601	Pipeline Network Analysis	3	0	0	3	20	50	100

Sl	Course Code	Name of the Electives					Asses	sment Pa	ttern
No	Course Coue	Name of the Electives	L	Т	Р	С	IA	MTE	ETE
1	BTME3701	Fundamentals of Mechatronics	3	0	0	3	20	50	100
2	BTME3702	Sensors and Actuators	3	0	0	3	20	50	100
3	BTME3703	Mechatronics System	3	0	0	3	20	50	100
4	BTME3704	Automatic Control Systems	3	0	0	3	20	50	100
5	BTME3705	Design of Mechatronics System	3	0	0	3	20	50	100
6	BTME3706	Robotics	3	0	0	3	20	50	100
7		Fluid Power System and Factory					20	50	100
/	BTME3707	Automation	3	0	0	3	20	30	100
8		Modelling and Simulation of					20	50	100
0	BTME3708	Mechatronics System	3	0	0	3	20	30	100
9	BTME3709	Industrial Automation	3	0	0	3	20	50	100
10		Computer Integrated					20	50	100
10	BTME3710	Manufacturing	3	0	0	3	20	50	100

Elective- (Mechatronics)

Elective-8

Sl	Course Code	Name of the Electives					Assess	sment Pa	ttern
No	Course Coue	Name of the Electives	L	Т	Р	С	IA	MTE	ETE
1	BTME3901	Industrial Automation	3	0	0	3	20	50	100
2	BTME3902	Robotics: Analysis and Systems	3	0	0	3	20	50	100
3		Sensors Application in					20	50	100
5	BTME3903	Manufacturing	3	0	0	3	20	50	100
4		Drives and Control system for					20	50	100
4	BTME3904	Automation	3	0	0	3	20	50	100
5	BTME3905	Pneumatic & Hydraulic Control	3	0	0	3	20	50	100
6	BTME3906	Process Control & Automation	3	0	0	3	20	50	100
7	BTME3907	Flexible Manufacturing Systems	3	0	0	3	20	50	100
8	BTME3908	Machine Vision	3	0	0	3	20	50	100
0		Design of Mechanisms and					20	50	100
9	BTME3909	Manipulators	3	0	0	3	20	50	100
10	BTME3910	Robotics & Control	3	0	0	3	20	50	100

Name of The Course	Engineering	Mec	hani	ics	
Course Code	BTME2001				
Prerequisite					
Corequisite					
Antirequisite					
		L	Τ	Р	С
		3	0	0	3

Course Objectives:

- 1. To calculate the reactive forces and analyse the structures.
- 2. To know the geometric properties of the different shapes.
- 3. To learn energy and momentum methods.

Course Outcomes

CO1	Solve the engineering problems involving
	equilibrium of paritcles and rigid bodies.
CO2	Solve the problems involving dry friction
	and virtual work.
CO3	Determine the centroid, centre of gravity
	and moment of inertia of various surfaces
	and solids.
CO4	Solve problems related to kinematics and
	kinetics of rigid body.
CO5	Solve problems using energy-momentum
	priniciple for a particle and rigid bodies
	in plane motion.
CO6	The student will be able to static force
	analysis of simple machines

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Equilibrium of Particle, Rigid body and Trusses 9 Hours

Introduction to Mechanics – Fundamental Principles – Coplanar forces – Equilibrium of particles – Free body diagram – Equilibrium of particle in space – Single equivalent force - -Equilibrium of rigid bodies in two dimensions. Analysis of plane trusses – Method of joints – Method of sections – Zero-force member.

Unit II:Friction and Virtual work 7 Hours

Characteristics of dry friction – Problems involving dry friction – Ladder – Wedges – Square threaded screws. Definition of virtual work – Principle of virtual work – System of connected rigid bodies – Degrees of freedom – Conservative forces – Potential energy – Potential energy criteria for equilibrium.

Unit III: Properties of Surfaces and Solids

6 Hours

Centroid – First moment of area – Theorems of Pappus and Guldinus – Second moment of area – Moment and Product of inertia of plane areas – Transfer Theorems – Polar moment of inertia – Principal axes – Mass moment of inertia.

Unit IV: Kinematic and Kinetics

9 Hours

Position, Velocity and Acceleration – Rectilinear motion – Curvilinear motion of a particle – Tangential and Normal components – Radial and Transverse components – Rotation of rigid bodies about a fixed axis – General plane motion – Absolute and relative motion method – Instantaneous centre of rotation in plane motion. Linear momentum – Equation of motion – Angular momentum of a particle and rigid body in plane motion – D'Alembert's principle.

Unit V: Energy and Momentum Methods 9 Hours

Principle of work and energy for a particle and a rigid body in plane motion – Conservation of

energy - Principle of impulse and momentum for a particle and a rigid bodies in plane motion – Conservation of momentum – System of rigid bodies – Impact - direct and central impact – coefficient of restitution.

Unit VI

Term Projects will be given to groups to analyze lifting machines for real life applications like material lifting cranes, mechanical screw jack etc.

Suggested Reading

1. J. V. Rao, D. H. Young, S. Timoshenko, Sukumar Pati (2013), Engineering Mechanics, Tata McGraw Hill Education. ISBN: 978-1-259-06266-7.

2. P. Ferdinand, E. Beer and J. Russell (2010), Vector Mechanics for Engineers, 9th Edition, McGraw-Hill International Edition. ISBN: 978-0-079-12637-5

3. Irving H. Shames (2012), Engineering Mechanics – Statics and Dynamics, 4th Edition, Prentice-Hall of India Private limited. ISBN: 978-8-131-72883-3

Name of The Course	Engineering Thermodynamics				
Course Code	BTME2002				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

- 1. To learn the basic principles of classical thermodynamics.
- 2. To study the laws of thermodynamics to various systems and analyze the significance of the results.
- 3. To analyze the performance of thermodynamic gas and vapour power cycles.

	· · · · · · · · · · · · · · · · · · ·			
CO1	Outline the thermodynamic properties for			
	different types of system.			
CO2	Apply the first law of thermodynamics for			
	a system undergoing a cycle.			
CO3	Demonstrate basic understanding of the			
	second law of thermodynamics and its			
	application to open and closed systems.			
CO4	Demonstrate basic understanding of			
	entropy and its application to engineering			
	systems.			
CO5	Practice the basic thermal analysis of			
	thermodynamic cycles.			
CO6	Apply thermodynamics relations to			
	practical cases			

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Basic Concepts of Thermodynamics 6 Hours

Thermodynamics and Energy, Macroscopic and microscopic viewpoint, Closed and open systems, Thermodynamic properties of a system, State and equilibrium, Processes and cycles, Forms of energy, Temperature and its measurement, Zeroth law of thermodynamics.

Unit II: First Law of Thermodynamics 9 Hours

Work transfer, pdV work, Types of work transfer, Net work done by a system, heat transfer, path function, Specific heat and latent heat, First law of thermodynamics for a closed system undergoing a cycle and change of state, Energy – a property of the system, enthalpy, specific heat at constant pressure and volume, PMM-I, Control volume, First law applied to steady flow process, Mass and energy balance.

Unit III: Second Law of Thermodynamics 9 Hours

Limitations of the first law of Thermodynamics, Kelvin-Planck statement of the second law of thermodynamics, Clausius statement, Equivalence of Kelvin- Planck and Clausius statements, Heat engine, Refrigerators, Heat Pump, COP, Carnot's theorem, Corollary of Carnot's theorem, Reversible and Irreversible process, Efficiency of Reversible Heat engine, PMM-II, Carnot cycle.

Unit IV: Entropy and properties of pure sustances 8 Hours

Introduction, Clausius theorem, Entropy – property of the system, Clausius inequality, Entropy change in irreversible process, Entropy principle, Reversible adiabatic work in steady flow system, Availability and irreversibility, Second law efficiency, p-v, p-T and T-s diagrams for a pure substance, Quality, Introduction to steam tables.

Unit V: Thermodynamic Cycles 8 Hours

Carnot cycle, Otto cycle, Diesel and Dual cycles, Brayton and reversed Brayton Cycle, Rankine cycle.

Unit VI:

Equation of State , Gibbs – Duhem relation , Maxwel relation , legendre transform , Thermodynamics potential , Clapeyron Equation

Suggested Reading

- P. K. Nag (2010), Basic and Applied Thermodynamics, Tata McGraw-Hill Publishing Company Ltd., ISBN 978-0-070-15131-4
- R. K. Rajput, A Textbook of Engineering Thermodynamics, Laxmi Publications; Fifth edition, ISBN-13: 978-8131800584
- 3. Yunus A. Cengel and Michael A. Boles, Thermodynamics, An Engineering

Approach, 8th Ed., McGraw Hill, 20015, ISBN: 978-9-339-22165-2.

 Jean-Philippe Ansermet, Sylvain D. Brechet, Principles of Thermodynamics, Ist Ed., Cambridge University Press; ISBN-13: 978-1108426091

Name of The Course	Manufact	turing 1	Proc	esse	5 I
Course Code	BTME20	03			
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	C
		3	0	0	3

Course Objectives:

- 1. To acquire basic knowledge about the behaviour and manufacturing properties of engineering materials and concepts of foundry and casting processes.
- 2. To acquire knowledge about various methods of welding, cold and hot working, and forming process.
- 3. To understand forging, moulding and powder metallurgy processes in detail and application of these in manufacture of a product.

Course Outcomes

CO1	Develop a simple shape of castings by		
001	using different casting methods.		
	6 6		
CO2	Prepare the weld joints by using different		
	welding methods.		
CO3	Develop a product by using metal forming		
	processes.		
CO4	Demonstrate the powder metallurgy		
	process for making a component.		
CO5	Apply the knowledge in manufacturing a		
	product from plastic or composite		
	materials.		
CO6	Know the research scope of		
	manufacturing technology and understand		
	the new trends in the manufacturing		
	sector.		

Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	

20 30 50 100

Course Content:

Unit I: Metal Casting Processes 12 Hours

Manufacturing- selecting manufacturing process – Fundamentals of metal casting – Fluidity of molten metal – Solidification time – Sand casting – Shell mold casting - Investment casting - Plaster mold casting – Ceramic mold casting – Die casting - Centrifugal casting – Melting practice and furnaces - Defects in sand casting – Testing and inspection of casting.

Unit II: Joining Processes 10 Hours

Metal fusion welding processes – Oxyfuel gas welding – Arc welding processes – Consumable electrode: SMAW- SAW – GMAW – FCAW – Non-consumable Electrode: GTAW- AHW-PAW – EBM – LBM – Solid state welding processes: Ultrasonic welding – Friction welding – Friction stir welding -Resistance welding – Weld quality – Testing welded joints.

Unit III: Metal Forming Processes 8 Hours

Cold and Hot working: Rolling – Forging – Extrusion – Drawing – Sheet metal forming processes – High Energy Rate Forming Processes: Explosive Forming – Electro Hydraulic Forming – Electro Magnetic Forming.

Unit IV: Processing of Metal Powders,Ceramics and Glass5 Hours

Production of metal powders: Compaction – Sintering and Finishing – Design considerations for powder metallurgy and Process capability Shaping of ceramics – Forming and shaping of glass – Design considerations for ceramics and glass – Processing of superconductors.

Unit V: Processing of Plastics and CompositeMaterials5 Hours

Types of Plastics – Types of Molding: Injection molding – Blow molding – Compression molding – Transfer molding – Thermoforming – Reinforced plastics – Metal Matrix Composites – Ceramic Matrix Composites.

Unit VI:

To study of research framework and industrial needs modernization of conventional machines and its scope in manufacturing sector.

Suggested Reading

- Manufacturing Technology Foundry, Forging and Welding (Vol-1), P.N.Rao. (2008), 3rd Edition, Tata McGraw Hill Publishing Company Ltd., New Delhi,ISBN: 978-0-070-08798-9.
- A.K. Hajra Choudhury, S.K. Hajra Choudhury and Nirjhar Roy (2009), Elements of Workshop Technology, Vol. – I, Media Promoters, ISBN: 978-8-185-09914-9.
- 3. W.A.J.Chapman (2001), Workshop Technology, Vol 1, 5th Edition, CBS Publishers, ISBN: 978-8-123-90401-6.

Name of The Course	Materials Sc	eienc	e		
Course Code	BTME2024				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	P	С
		2	0	2	3

Course Objectives:

- 1. The main objective of this course is to provide the basic knowledge needed to explore the discipline of materials science and engineering.
- 2. To develop the knowledge of how the structure of materials is described technically, including crystallography, microstructure, defects, and phase diagrams

- 3. To develop the knowledge of how the properties of materials are described technically and how material failure is analyzed
- 4. To introduce the concepts of structure-property relationships
- 5. To develop knowledge in various class of materials and their applications

Course Outcomes

CO1	Explain how materials are formed and
	their classification based on atomic
	arrangement.
CO2	Draw the phase diagrams for different
	combination of metals.
CO3	Choose the heat treatment process for
	material based on the application.
CO4	Describe the mechanical behaviour of
	metallic systems and its importance.
CO5	Illustrate the different class of materials
	and their applications.
CO6	Analyze the micro-structural features of
	different materials.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Crystal Structure 7 Hours

Introduction to materials science – Primary and Secondary bonding in materials- Crystalline and amorphous materials –Single crystal and polycrystalline materials – Space Lattice-Module cell –Crystal systems – Bravais Lattice-Miller indices – Closed packed structures-Principal Metallic crystal structures stacking sequence and stacking faults and crystal defects- Point, Line, Planar and volume; Volume, planar and Linear density calculations-Polymorphism and allotropy.

Unit II: Phase Diagrams 8 Hours Basics of Solidification mechanism - Cooling curve of pure metal and alloy - Phase -Phase Diagram- Gibbs's Phase rule - Interpretation of mass fractions using Lever's rule – Hume Rothery rules-Binary Iso-morphous system-Binary Eutectic alloy system (Lead-Tin System) –Binary Peritectic alloy system (Iron-Nickel System) -Invariant reactions - Iron-Iron carbide phase diagram- Slow cooling of Hypo and hyper eutectoid steels _ Temperature-Time-Transformation (TTT) and Continuous Cooling Transformation (CCT) Diagrams - Effect of alloying elements in steel – types of stainless steel and cast iron.

Unit III: Heat Treatment 7 Hours

Heat Treatment – Annealing and its types, Normalizing, Hardening tempering, Austempering and Mar-tempering – Microstructure observation – Surface Heat treatment processes – Carburizing, Nitriding, cyaniding, carbonitriding, flame and induction hardening.

Unit IV: Mechanical Properties of Materialsand Testing10 Hours

Mechanical properties of materials Strengthening mechanism -- Plastic deformation of single and poly-crystalline materials – Effect of Slip and twinning – Stress-strain curves of various ferrous and non-ferrous metals -Engineering stress strain - true stress strain relations problems - Tensile test of ductile material properties evaluation- Hardness measurement tests - Fracture of metals - Ductile and Brittle fracture; Fatigue - Endurance limit of ferrous and non-ferrous metals - Fatigue test ; Creep and stress rupture- mechanism of creep - stages of creep and creep test - SEM, XRD.

Unit V: Advanced materials and Applications 8 Hours

Composites – Fiber reinforced, Metal Matrix, Ceramic Matrix – properties and applications; Ceramics – Alumina, Zirconia, Silicon Carbide, Sialons, Reaction Bonded Silicon Nitride(RBSN), Glasses– properties and applications- Magnetic materials – Hard and soft magnets – Ferromagnetic Hysteresis – properties of magnetic materials – Intermetallic compounds-Polymers – thermosetting and thermoplastics – mechanical properties of polymers-Material selection procedure (two case studies)

Unit V: List of Experiments

- 1. To study crystal structures of materials.
- 2. To study crystal imperfections in given specimens.
- 3. To study Bravais lattices with the help of models.
- 4. Specimen preparation and micro-structural examination.
- 5. Comparative study of microstructures of given specimens (mild steel, gray C.I., brass, copper etc.)
- 6. Heat treatment experiments such as annealing, normalizing, quenching, case hardening and comparison of hardness before and after.
- 7. To study microstructure of heat-treated steel.
- 8. To study thermo-setting of plastics.
- 9. To study the creep behavior of a given specimen
- 10. To study the properties of various types of plastics

Suggested Reading

- V. Raghavan. Materials science and Engineering: A First Course 5E, ISBN 9788120324558.
- William D. Callister, David G. Rethwisch, Fundamentals of materials science and Engineering: An integrated approach 3e : An Integrated Approach 3E ISBN 0470125373 (0-470-12537-
- William F. Smith and Javad Hashemi (2004), Foundations of materials science and Engineering 4th ed., Mc Graw Hill. Isbn: 978-0-073-52924-0

Name of The	Functions of complex
Course	variables and transforms

Course Code	MATH 2001				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

In modern world, Functions of complex variables and transform Calculus has become an important tool extensively used in many fields such as science, engineering, business, industry. The objective of the course is familiarizing the prospective engineers with techniques in Transform Calculus and differentiation and integration of Complex variable. It aims to equip the students with standard concepts and tools to advance level that will serve them well towards tackling more advanced level of Mathematics and application that they would find useful in their discipline.

Course Outcomes

CO1	To understand the behavior of complex					
	valued functions such as					
	continuity/differentiability and					
	analyticity.					
CO2	To evaluate complex integral,					
	singularities, residue of an analytic					
	function, contour integral and an integral					
	over the real line.					
CO3	To apply Laplace transforms for solving					
	initial value problems					
CO4	To applyFourier transforms for solving					
	one dimensional heat and wave equations.					
CO5	To apply inverse Z-transforms for solving					
	difference equations.					
CO6	To apply Z - transform for difference					
	equations.					

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Complex Differentiation 12 Hours

Complex number system(A review), Limit, Continuity, Differentiability of function, Cauchy-Riemann Equations in Cartesian and Polar coordinates, Analytic function, elementary analytic functions (exponential, trigonometric, logarithm),Harmonic functions, harmonic conjugate, Conformal mappings and mobius transformations with their properties.

Unit II: Complex Integration 10 Hours

Contour integral, Cauchy theorem (without proof), Cauchy Integral formula (withoutproof), Maximum-Modulus theorem (without proof), Taylor's and Laurent's series: radius and circle of convergence, Zeroes and singularities of analytic functions, Residues, Residue theorem (without proof), Evaluation of definite integrals involving sine and cosine, and real definite integrals around unit and semi circles.

Unit III: Laplace Transform 10 Hours

Definition, existence condition, Properties, Laplace transform of Periodic, Unit step and Dirac Delta functions, Laplace transforms of derivatives and integrals, Evaluation of integrals using Laplace transforms, Convolution theorem, Inverse Laplace transform, Application of Laplace Transform in solving initial value problems.

Unit IV: Fourier Transform 7 Hours

Fourier integrals, Complex Fourier transforms, Fourier sine and cosine transforms, Properties of Fourier transforms, Convolution theorem, Fourier transforms of derivatives, Applications of Fourier transform in solving one dimensional Heat and Wave equations.

Unit V: Z Transform 3 Hours Definition and Elementary properties of Ztransform (Unilateral, Bilateral), Inverse Z– transform

Unit VI:

3 Hours

Convolution theorem, Solution of difference equations using Z - transform.

Suggested Reading

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, John Wiley &Sons.
- 2. J W Brown and R V Churchill, Complex Variables and Applications ,7th Ed., Mc-GrawHill,2004
- 3. Michael D. Greenberg, Advanced Engineering Mathematics, 2nd Edition, PearsonEducation
- 4. Peter V. O'Neil,Advanced Engineering Mathematics, 6th Edition, CengageLearning.
- 5. R. K. Jain and S. R. K. IyengarAdvanced Engineering Mathematics, 4th Edition, NarosaPublishers

Name of The	Artificial Intelligence and				
Course	Applications				
Course Code	BTME2021				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Τ	Р	C
		1	0	0	1

Course Objectives

- 1. To present a problem oriented in depth knowledge of Artificial Intelligence and Applications.
- 2. To address the underlying concepts, methods and application of different Artificial Intelligence and Applications

Course Outcomes

CO1 Understand the scope of AI

CO2	Explain problem solving state space
02	search
CO3	Apply knowledge representation
005	predicate logic
CO4	Describe handling uncertainty and
04	learning
CO5	Apply for practical cases.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Scope of AI
8 Hours
Introduction to AI- application domains - nat

Introduction to AI- application domains - natural language processing, vision and speech processing, robotics, expert systems, AI techniques- search knowledge, abstraction.

Unit II: Problem solving State space search 8 Hours

Production systems, search space control: depth first, breadth-first search, heuristic search - hill climbing, best-first search, branch and bound. Problem Reduction, Constraint Satisfaction End, Means-End Analysis.

Unit III: Knowledge Representation Predicate Logic 8 Hours

Unification, modus pones, resolution, dependency directed backtracking. Rule based Systems: forward reasoning, conflict resolution, backward reasoning, use of no backtracks. Structured Knowledge Representation: semantic net slots, exceptions and default frames, conceptual dependency, scripts.

Unit IV: Handling uncertainty and learning 8 Hours

Non-monotonic reasoning, probabilistic reasoning, use of certainty factors, fuzzy logic, Concept of learning, learning automation, genetic algorithm, learning by inductions, neural network.

Unit V: Applications using AI 8 Hours

Various Applications - Robot Classification, Robot Specification, notation Direct and Inverse Kinematics: Co-ordinates Frames, Rotations, Homogeneous Coordinates.

Suggested Reading

 S. E. Rich and K. Knight, "Artificial intelligence", MH, 2nd ed., 1992.
 N.J. Nilsson, "Principles of AI", Narosa Publ. House, 2000.
 Robin R Murphy, Introduction to AI Robotics PHI Publication, 2000
 D. W. Patterson, "Introduction to AI and Expert Systems", PHI, 1992.
 R. J. Schalkoff, "Artificial Intelligence an Engineering Approach", McGraw Hill Int. Ed., Singapore, 1992.
 George Lugar, Al-Structures and Strategies for and Strategies for Complex Problem solving, 4/e, 2002, Pearson Education

Name of The Course	Manufacturing Processes I Laboratory				
Course Code	BTME2004				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		0	0	2	1

Course Objectives:

 To learn to give initial shapes to a metal in foundry shop and to be processed further to make a product.
 To train to join metal pieces using different welding techniques.

CO1	Prepare sand mould and it further used to
	produce casting.
CO2	Determine the characteristics of sand permeability number and fine grainness
	number.
CO3	Produce simple casting components using
	sand mould casting technique.
CO4	Prepare a weld joint by using different
	welding techniques.
CO5	Illustrate the relationship between cutting
	parameters of cutting speed, feed rate and
	depth of cut on forces generated in oblique
	cutting.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

Course Content:

List of Experiments

1. Preparation of green sand mould using wooden pattern.

2. Determination of grain fineness number.

3. Determination of permeability number.

4. Determination of compressive and shear strength of moulding sand.

5. Preparation of casting using non-ferrous metals with the help of tilting furnace.

6. Preparation of butt joint using gas oxy acetylene gas welding.

7. Welding of stainless steel specimen using TIG welding.

8. Preparation of butt joint with V-groove using MIG welding.

9. To establish the relationship between cutting parameters of cutting speed, feed rate and depth of cut on forces generated in oblique cutting.

10. Study and identification of various types of flames generated in oxy-acetylene gas welding.

Suggested Reading

- 1. Manufacturing Processes I Lab manual prepared by faculties of School of Mechanical Engineering
- A.K. Hajra Choudhury, S.K. Hajra Choudhury and Nirjhar Roy (2009), Elements of Workshop Technology, Vol. – I, Media Promoters, ISBN: 978-8-185-09914-9.
- **3.** W.A.J.Chapman (2001), Workshop Technology, Vol 1, 5th Edition, CBS Publishers, ISBN: 978-8-123-90401-6.
- P.N.Rao. (2008), Manufacturing Technology – Foundry, Forging and Welding (Vol-1), 3rd Edition, McGraw Hill Publishing Company Ltd., New Delhi, ISBN: 978-0-070-08798-9.

Name of The Course	Machine Drav Laboratory	wing	5		
Course Code	BTME2005				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		0	0	2	1

Course Objectives:

1. To introduce the students to the basics and standards of engineering drawing related to machine elements.

2. To enable the students to draw sectioned views, development of surfaces and orthographic views of machine elements.

3. To train the students technical skills regarding part drawings, production and assembly drawings.

CO1	Draw and interpret sectioned solids and		
	development of surfaces.		
CO2	Explain various standards and		
	specifications related to standard machine		
	components.		
CO3	Apply the knowledge of fits and		
	tolerances for various applications.		
CO4	Draw orthographic views of machine		
	elements.		

CO5	Select,	configure	and	synthesize
	mechanie	cal componen	ts into a	assemblies.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

Course Content:

Unit I: Sectioning of Solids and Development			
of Surfaces	6 Hours		

Selection of Views-Parts not usually sectioned-Development of Surfaces and application in sheet metal industry.

Unit II: Machine Drawing Conventions 4 Hours

Need for drawing conventions- introduction to BIS conventions-Reference to hand book for the selection of standards-Conventional representation of material, common machine elements and parts -Methods and general rules of dimensioning of holes, centers, curved and tapered features.

Unit III: Limits, Fits and Tolerances 4 Hours

Limits, Fits and tolerances – Allocation of fits for various mating parts – Tolerance data sheet – Tolerance table preparation –Geometric tolerance.

Unit IV: Drawing of Machine Elements 10 Hours

Drawing of the following machine elements: threaded fasteners and joints, keys, cotters and pin joints, welded and riveted joints, pipe joints, shaft coupling and pulleys, journals and bearings.

Unit V: Assembly Drawings 4 Hours

Drawings of assembled views for the part drawings of the Engine parts and and other machine parts- Screw jack, Machine Vice, single tool post. Valves: Steam stop valve, feed check valve.

Suggested Reading

- N.D. Bhatt (2011), Machine Drawing, Published by R.C.Patel, 46th Edition, Charotar PublishingHouse Book Stall, ISBN: 978-9-380-35846-8.
- K C John (2009), Engineering Graphics for Degree, Prentice Hall of India. ISBN: 978-8-120-33788-3.
- Warren Luzadder and Jon M. Duff (2009), Fundamentals of Engineering Drawing with an Introduction to Interactive Computer Graphics for Design and Production, 11th Edition, PHI Learning, ISBN: 978-8-120-30885-5.
- 4. P.S. Gill (2012), Machine Drawing, S. K. Kataria& Sons, ISBN: 978-8-185-74979-2.
- 5. Ajeet Singh (2012), Machine Drawing (with AutoCAD), 2nd Edition, Tata Mcgraw Hill Education, ISBN: 978-0-071-07294-6.
- Barclay James and Griffiths Brian (2002), Engineering Drawing for Manufature, Butterworth-Heinemann, ISBN: 978-1-857-18033-6.

Name of The	Skill Lab (S	olid	Wor	·ks)	
Course					
Course Code	BTME2022				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		0	0	2	1

Course Objectives:

- 1. To enable students to use a modern CAD software package for solid modeling.
- 2. To draw 3D views of various machine elements.
- 3. To apply the knowledge of software package to model any chosen prototype.

CO1	Use SolidWorks software package for solid modeling.			
CO2	Draw solid models of various machine elements in SolidWorks.			
CO3	Apply the improvided of Solid Works to			

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

Course Content:

1	Unit	Unit Topics			Deleting Overdefined Dimensions
	1.Introductio	Introduction to	Mee		 Opening an Existing File
Week 1(2Hours)	n to SOLIDWOR KS	 SOLIDWORKS 2016 Getting Started with SOLIDWORKS Menu Bar and SOLIDWORKS Menus Command Manager Toolbar Dimensioning Standard and Units Important Terms and Their Definitions Hot Keys Color Scheme The Skatebing Environment 	Week3(2Hours)	5. Advanced Dimensionin g Techniques and Base Feature Options	 Advanced Dimensioning Techniques Measuring Distances and Viewing Section Properties Creating Base Features by Extruding Sketches Creating Base Features by Revolving Sketches Determining the Mass Properties of Parts Dynamically Rotating the View of a Model Modifying the View
5	2. Drawing Sketches for Solid Models	 The Sketching Environment Starting a New Session of SOLIDWORKS 2016 Task Panes Starting a New Document in SOLIDWORKS 2016 Understanding the Sketching Environment Setting the Decument Optimum 	M		 Orientation Restoring the Previous View Displaying the Drawing Area in Viewports Display Modes of a Model Additional Display Modes Assigning Materials and Textures to Models
We		 Setting the Document Options Learning Sketcher Terms Drawing Sketch Entities Drawing Display Tools Deleting Sketched Entities 	Week3(2Hours)	6. Creating Reference Geometries	 Importance of Sketching Planes Reference Geometry Advanced Boss/Base Options Modeling Using the Contour Selection Method Creating Cut Features

Week2(2Hours)	3. Editing and Modifying Sketches	 Editing Sketched Entities Creating Patterns Editing Patterns Writing Text in the Sketching Environment Modifying Sketched Entities
Week2(2Hours)	4. Adding Relations and Dimensions to Sketches	 Applying Geometric Relations to Sketches Design Intent Dimension a Sketch Concept of a Fully Defined Sketch Deleting Overdefined Dimensions Opening an Existing File
Week3(2Hours)	5. Advanced Dimensionin g Techniques and Base Feature Options	 Advanced Dimensioning Techniques Measuring Distances and Viewing Section Properties Creating Base Features by Extruding Sketches Creating Base Features by Revolving Sketches Determining the Mass Properties of Parts Dynamically Rotating the View of a Model Modifying the View Orientation Restoring the Previous View Displaying the Drawing Area in Viewports Display Modes of a Model Additional Display Modes Assigning Materials and Textures to Models
(2Hours)	6. Creating Reference Geometries	 Importance of Sketching Planes Reference Geometry Advanced Boss/Base Options

• Concept of Feature Scope

	_		1	·	
Mod Tool	dvanced leling ls-I	 Creating Simple Holes Creating Standard Holes Using the Hole Wizard Adding External Cosmetic Threads 		9. Editing Features	 Editing Using the Edit Feature Tool Editing Sketches of the Sketch-based Features Editing the Sketch Plane Using the Edit Sketch Plane
Week 4 (2Hours)		 Creating Fillets Selection Options Creating Fillets Using the FilletXpert Creating Chamfers Creating Shell Features Creating Wrap Features 			 Using the Edit Sketch Plane Tool Editing Using the Instant3D Tool Editing Features and Sketches byUsing the Cut, Copy, and Paste Options
	dvanced leling ls-II	 Creating Mirror Features Creating Linear Pattern Features Creating Circular Pattern Features Creating Sketch Driven Patterns Creating Curve Driven Patterns 	Week 5 (2Hours)		 Cutting, Copying, and Pasting Features and Sketches fromOne Document to the Other Copying Features Using Drag and Drop Deleting Features Deleting Bodies Suppressing Features Unsurpressing the
Week 5 (2Hours)		 Creating Table Driven Patterns. Creating Fill Patterns Creating Variable Patterns Creating Rib Features Displaying the Section View of a Model Changing the Display States 			 Unsuppressing the Suppressed Features Unsuppressing Features with Dependents Hiding Bodies Moving and Copying Bodies Reordering the Features Rolling Back the Feature Renaming Features
				10. Advanced	 Creating Folders in the FeatureManager Design Tree What's Wrong Functionality Creating Sweep Features Creating Cut-Sweep Features
			Week 6 (2Hours)	Modeling Tools-III	 Creating Loft Features Adding a Section to a Loft Feature

Week 6 (2Hours) Creating Lofted CutsCreating 3D SketchesCreating Grid Systems

Editing 3D SketchesCreating CurvesExtruding a 3D SketchCreating Draft Features

	11	• Advanced Medaline Test			- Creating Datterness
Week 7 (2Hours)	•	 Advanced Modeling Tools Creating Fastening Features Creating Freeform Features Dimensioning a Part Using DimXpert 			 Creating Patterns of Components in an Assembly Copying and Mirroring Components
Week 7 (2Hours)	3D Modelling Project	• Use the concept of Reverse Engineering and Redesign the parts by measuring them using the Measuring Instrument	Week 9 (2Hours)		 Copying a Component along with Mates Simplifying Assemblies using the Visibility Options Checking Interferences in an
Week 8 (2Hourse)	3D Modelling Project 12.	 Use the concept of Reverse Engineering and Redesign the parts by measuring them using the Measuring Instrument Assembly Modeling 	M		 Assembly Checking the Hole Alignment Creating Assemblies for Mechanism Creating the Exploded State of an Assembly
Week 8 (2Hours)	I2. Assembly Modeling-I	 Assembly Modeling Creating Bottom-up Assemblies Creating Top-down Assemblies Moving Individual Components Rotating Individual Components Moving and Rotating Individual Components Using the Triad Assembly Visualization 	Week 10 (2Hours)	14. Working with Drawing Views-I	 The Drawing Mode Starting a Drawing Document Types of Views Generating Standard Drawing Views Generating Derived Views Working with Interactive Drafting in SOLIDWORKS Editing and Modifying Drawing Views Modifying the Hatch Pattern in Section Views
Week 9 (2Hours)	13. Assembly Modeling-II	 Advanced Assembly Mates Mechanical Mates Creating Sub-assemblies Deleting Components and Sub-assemblies Editing Assembly Mates Editing Components Editing Sub-assemblies Dissolving Sub-assemblies Replacing Components 	Week 10 (2Hours)	15. Working with Drawing Views-II	 Adding Annotations to Drawing Views Adding the Bill of Materials (BOM) to a Drawing Linking Bill of Materials Adding Balloons to the Drawing Views Adding Balloons Using the AutoBalloon Tool Creating Magnetic Lines Adding New Sheets to the Drawing Views Editing the Sheet Format
					 Editing the Sheet Format Creating User-Defined Sheet

Formats

School of Mechanical Engineering

	16. Surface	Creating an Extruded Surface					
	Modeling	• Creating a Revolved Surface		quisite	BTME2001-	Fngingari	ng
		• Creating a Swept Surface	11010	quisite	Mechanics	Engineern	ng
Week 11 (2Hours)		• Creating a Lofted Surface	Co-re	quisite			
H		• Creating a Boundary Surface		requisite			
1 (2		• Creating a Planar Surface				L T F	
k 1		• Creating a Fill Surface				3 0 0	3
/ee		• Creating a Radiated Surface	a	01.1			
×		• Offsetting Surfaces,	Course	e Objective	S		
		Trimming Surfaces	1.	1. To deve	elop the relatio	nship betw	veen the
		Untrimming Surfaces			lied to a not		
		• Extending Surfaces, Knitting			resses and defe	ormations	induced
		Surfaces ,Filleting Surfaces		in the body			1
		• Creating a Mid-Surface,	2.		the general sta		
_		Deleting Holes from		strains in a given loaded member and the magnitude and direction of the principa			
ILS)		Surfaces	ces stresses				incipai
Hot		• Replacing Faces, Deleting	3.		tand the differ	ent approa	ches to
(5)		Faces			slope and defle	ection for	various
11		Moving and Copying		types of be			
Week 11 (2Hours)		Surfaces	4.		e the columns v		
M		Mirroring Surface Bodies		conditions	by using differ	ent theorie	s.
		Adding Thickness to Surface Bodies	Course	e Outcomes	\$		
		• Creating a Thicken Surface	COL	Understar	nd the basics of	simple stre	ess
		Cut, Creating a Surface Cut	CO1	and strain		•	
	3D	• Use the concept of Reverse	CO2		hr's circle and		ems
	Modeling,	Engineering and Redesign			biaxial state of		
Se (se	Assembly and Drafting	the parts by measuring then	¹ CO3		ory of simple b	ending for	
	Project	using the Measuring		analysing problems. Calculate deflection of various beams of			ms of
(4H)	(Minimum	Instrument	CO4	different shapes.			1115 01
x 12 (4Hours) + 2 13 (2Hours)	10 parts)	Creating Assemblies of parts	007	Calculate torsion in shafts and buckling			ling
Week 12 (4Hours) + Week 13 (2Hours)		created earlier	CO5	load of co	lumn.		Ū.
Week		 Drafting of the assembly model created 	CO 6		odel the system	n and find o	out
		 Student needs to demonstrate 		deflection	l		
	Project Display					4	
	Display	his project		ontinuous A	Assessment Par	ttern	

Suggested Reading

- 1. 1. Matt Lombard, :Solidworks 2013 Bible", 2013, ISBN: 978-1-118-50840-4
- Greg Jankowski, Richard Doyle, "SolidWorks For Dummies", 2nd Edition, 2011 ISBN: 978-1-118-05147-4

Name of The	Mechanics of Materials
Course	
Course Code	BTME2008

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
30	20	50	100

Course Content:

Unit I: Stresses and Strains 8 Hours Definition/derivation of normal stress, shear stress, and normal strain and shear strain – Stressstrain diagram- Elastic constants – Poisson's ratio – relationship between elastic constants and Poisson's ratio – Generalized Hook's law – Strain energy – Deformation of simple and compound bars – thermal stresses.

Unit II: Bi-axial Stress system 8 Hours

Biaxial state of stress – Stress at a point – stresses on inclined planes – Principal stresses and Principal strains and Mohr's circle of stress, Theories of failure

Thin cylinders and shells – deformation of thin cylinders and shells; Thick Cylinders, Shrink fits, Compounding. Fundamentals of theory of elasticity.

Unit III: Simple Bending 8 Hours

Types of beams: Cantilever, Simply supported, Overhanging: Shear Force and Bending Moment Diagrams. Theory of simple bending – bending stress and shear stress in beams.

Unit IV: Deflection of Beams 8 Hours

Deflection of beams by Double integration method – Macaulay's method – Area moment theorems for computation of slopes and deflections in beams – Conjugate beam method.

Unit V: Torsion and columns 8 Hours

Introduction to Torsion – derivation of shear strain – Torsion formula – stresses and deformations in circular and hollow shafts – Stepped shafts – shafts fixed at the both ends Theory of columns – Long column and short column - Euler's formula - Rankine's formula - Secant formula - beam column.

Unit VI:

Modeling of the system and find out deflection at various points

Suggested Reading

1. S. S. Rattan (2011) Strength of material Tata McGraw Hill Education. ISBN: 978-0-071-07256-4.

2. S.P. Timoshenko and D.H. Young (2011), Strength of Materials, 5th edition, East West Press Ltd, ISBN: 978-8-176-71019-0.

3. R.K. Bansal (2010), Strength of Materials, 5th Edition, Laxmi Publications, ISBN: 978-8-131-80814-6.

Name of The Course	Fluid Mecha	anics			
Course Code	BTME2009				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		2	0	2	3

Course Objectives

1.Understand fluid behaviour for engineering design and control of fluid systems.

2. Develop competence with mass, energy and momentum balances.

3. Study the development of boundary layers.

C01	Explain the properties of fluid and its				
COI	kinematics.				
	Categorize the types of flow and				
CO2	applications of governing equations in a				
	fluid flow system.				
	Examine the losses of fluid flow through				
CO3	pipes and study about pipe network				
	design.				
CO4	Calculate the dependent and independent				
C04	parameters of fluid flow.				

CO5	Examine the boundary layer and no-slip boundary condition in the fluid flow.
CO6	Apply the basic laws of fluid mechanics in flow measurement.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
30	20	50	100

Course Content:

Unit I: Fluid Properties and Hydrostatics 6 Hours

Density, Viscosity, Surface tension, compressibility, capillarity, Hydrostatic forces on plane, inclined and curved surfaces, buoyancy, centre of buoyancy, metacentre.

Unit II: Fluid Dynamics 6 Hours

Control volume, Fluid Kinematics, Types of flows; Steady flow, Unsteady flow, Uniform and Non Uniform flow, Rotational flow, Irrotational flow, 1-D, 2-D, 3-D flows– Streamline and Velocity potential lines, Euler and Bernoulli's equations and their applications, moment of momentum, Momentum and Energy correction factors, Impulse, Momentum equation- Navier-Stokes Equations, Applications.

Unit III: Open & Closed Channel Flow 12 Hours

Open Channels Flow, Laminar & turbulent flow through pipes, Darcy's law, Minor losses, Multi reservoir problems, Moody's diagram, Hagen Poiseuille equation, Turbulent flow, Specific Energy, Critical flow concept, Hydraulic jump, uniform flow and gradually varying flow concepts, Pipe network design, Measurement of pressure and flow, Measurement of pipe flow, velocity through pipes and open channels.

Unit IV: Dimensional Analysis 10 Hours

Dimensional homogeneity, Raleigh and Buckingham π theorems, Non-dimensional numbers, Model laws and distorted models, Module quantities, Specific quantities

Unit V: Boundary layers 6 Hours

Boundary layers, Laminar flow and Turbulent flow, Boundary layer thickness, momentum-Integral equation, Drag and lift, Separation of boundary layer, Methods of separation of boundary layer.

Unit VI:

1. Conducting experiments to verify Bernoulli's theorem.

2. Determination of the Coefficient of discharge and coefficient of velocity for the given Orifice meter.

3. Determination of the Coefficient of discharge of given Venturi-meter.

4. Determination of the Coefficient of discharge of given Rectangular notch.

5. Determination of the Coefficient of discharge of given 'V' notch.

6. Comparative study of head loss in pipes connected series and parallel.

7. Study of fluid flow types using Reynolds apparatus.

8. Determination of drag force at different incidence angle in wind tunnel.

9. Determination of metacentric height.

10. Determination of the Reynolds no. in fluid flows.

Suggested Reading

- R. K. Bansal (2010), A Textbook of Fluid Mechanics and Hydraulic Machines, 9thEdition, Laxmi Publication (P) Ltd., New Delhi. ISBN- 978-8-131-80815-3
- 2. <u>G.K. Batchelor</u>, An Introduction to Fluid Dynamics, Cambridge Mathematical Library, ISBN: 9780521663960

- Yunus A. Çengel (2010), Fluid Mechanics, Tata McGraw Hill, ISBN: 978-0-070-70034-5.
- Frank M. White (2011), Fluid Mechanics, 7th edition, Tata McGraw-Hill Education, ISBN- 978-0-071-33312-2.

Name of The Course	Manufacturing Processes II and Metrology					
Course Code	BTME2010	•				
Prerequisite	BTME2003- Manufacturing Processes I					
Co-requisite						
Anti-requisite						
		L	Т	Р	С	
		3	0	0	3	

Course Objectives

1. To get acquainted with the theory of metal cutting, mechanism of machining and the parameters that influences the machining processes.

2. To get basic idea about different conventional and non conventional machining processes.

3. To gain knowledge of various instruments for linear measurement, angular measurement and surface finish etc

Course Outcomes

C01	Explain the mechanism of chip formation								
COI	in machining.								
	Describe the various machining								
CO2 processes such as turning, drilling, boring, shaping, slotting, milling and grinding.									
					CO3	3 Illustrate the principle of gear generation process.			
					005				
CO4	Illustrate the working principle of Non-								
004	traditional machining processes.								
COF	CO5 Explain the principle of different metrology instruments.								
005									
CO6	Able to explain the working of CNC								
000	machines and micromachining.								

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
30	20	50	100

Course Content:

Unit I: Theory of Metal Cutting 10 Hours

Mechanism of chip formation – Tool Specification System- Tool signature for single point & Multi-point cutting Tools- Orthogonal and Oblique cutting – Single Point and Multipoint Cutting Tools-Machining forces - Merchant's Circle Diagram - Thermal aspects of metal machining - Cutting fluids - Machinability -Cutting tool materials - Tool wear and Tool life calculations.

Unit II: Lathe and Basic Machine Tools 08 Hours

Lathe - Types - Operating Parameters - lathe operations – Tool nomenclature - Work holding devices. Shaping - Planing - Slotting – Drilling -Boring – Reaming – Tapping – Broaching.

Unit III: Milling, Grinding Machines and Gear Generation 08 Hours

Milling machines - Cutters - Milling operations -Indexing. Grinding – Types of grinding machines - Grinding wheel designation and selection - Bond and Bonding processes.

Gear generating principles - Gear Hobber - Gear finishing methods - Bevel gear generator

Unit IV: Non-traditional Machining Processes 07 Hours

Classification of Nontraditional Machining process – Principle of AJM, WJM, USM, EDM, ECM, LBM - Process characteristics – Applications

Unit V: Metrology and Instrumentation 07 Hours

Measurement standards - Linear, angular and form measuring instruments – Comparators – Gauge blocks – Gauges - Optical instruments – Profilometer – Coordinate measuring machine

Unit VI:

CNC machining: Machining on CNC lathe, drilling and milling machines, Micromaching: Abrasive jet micromachining (AJMM), Abrasive water jet micromachining (AWJMM), Water jet micromachining (WJMM), Ultrasonic micromachining (USMM).

Suggested Reading

- 1.P.C. Sharma, (2008), Text book of Production Technology, 7th Edition, S. Chand & Company Ltd, New Delhi, ISBN: 978-8-121-91114-6.
- 2.O.P. Khanna & M. Lal (2010), A Text book of Production Technology, Dhanpat Rai Publications, New Delhi, ISBN: 978-8-189-92832-2.
- 3.S. KapakjianandS.R.Schmid (2005), Manufacturing Engineering and Technology, 4thEdition, Pearson Education (Singapore) Pvt. Ltd. ISBN: 978-8-177-58170-6.

Name of The Course	Probability and Statistics				
Course Code	MATH2003				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Τ	Р	С
		3	0	0	3

Course Objectives

The aim of this course is to introduce students to the basic concepts of probability distributions and their applications. The course also serves as a foundation to analyze problems in Science and Engineering applications through statistical testing methods.

Course Outcomes

C01	Define the basic concepts of Probability
COI	theory and Random variables.
CO2	Identify the type of distribution and
02	Identify the type of distribution and Apply it in problem solving.
CO3	Apply the concept of correlation and
COS	Regression.

	Explain the concepts of sampling
CO4	distributions and estimation theory and
04	apply it to estimate the confidence
	intervals.
CO5	Apply statistical tests to solve the hypothesis testing problems.
005	hypothesis testing problems.
CO6	Apply statistical tests to solve Large and
000	Small samples.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
30	20	50	100

Course Content:

Unit I: Variables and probability Distributions 12 Hours

Review of Probability, Probability density function, Cumulative distribution function, Expectation and Variance. Binomial, Poisson and Geometric distributions, Probability density function, Cumulative distribution function, Expectation and Variance, Uniform, Normal, Exponential distributions, Joint distribution and joint density functions, Conditional distribution.

Unit II: Correlation and Regression 8 Hours

Curve fitting by method of least squares, Fitting of straight lines, Polynomials, Exponential curves, Correlation, Rank correlation, Regression analysis, Linear and non-linear regression, Multiple regression.

Unit III: Sampling Theory 5 Hours

Population and sample, Statistical inference, Sampling with and without replacement, Random samples, Population parameters, Sample statistics, Sampling distributions, Sample mean, Sampling distribution of means, Sample variances, Sampling distribution of variances, Case where population variances is unknown

Unit IV:	Estimation	Theory
5 Hours		
Estimators, Point Confidence Interval parameters, Confiden a Normal distribut estimates.	l estimates of nce intervals for	population variance of
Unit V: Tests of Hy	pothesis and S	ignificance
	7	Hours
Statistical hypothe hypothesis, test of 1 Type I and Type II e Tests involving the Tailed and Two-Tail	hypothesis and errors, Level of Normal distri	significance, Significance, bution, One-
Unit VI:		3

Unit VI: Hours

Special tests of significance for Large and Small samples (F, chi- square, z, t- test), one way ANOVA.

Suggested Reading

- R. E. Walpole, R. H. Mayers, S. L. Mayers and K. Ye (2007), Probability and Statistics for Engineers and Scientists, 9th Edition, Pearson Education, ISBN:978-0-321-62911-1.
- Sheldon M. Ross (2011), Introduction to Probability and Statistics for Engineers and Scientists, 4th Edition, Academic Foundation, ISBN:978-8-190-93568-5.
- Douglas C. Montgomery (2012), Applied Statistics and Probability for Engineers, 5th Edition, Wiley India, ISBN: 978-8-126-53719-8.
- M. R. Spiegel, J. Schiller and R. A. Srinivasan(2010), Probability & Statistics, 3rd Edition, Tata- McGraw Hill, ISBN:978-0-070-15154-3.

Name of The	Mechanics of Materials
Course	Laboratory

Course Code	BTME20	12			
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		0	0	2	1

Course Objectives

To supplement the theoretical knowledge gained in Strength of Materials with practical testing under applied loads. This would enable the student to have a clear understanding of the design for strength and stiffness.

Course Outcomes

CO1	Conduct tension and compression tests on standard specimens.
CO2	Calculate impact strength of standard specimen.
CO3	Determine spring constant of closed and open coil helical spring.
CO4	Calculate the fatigue strength of given specimens.
CO5	Calculate hardness of specimens, and determine the young's modulus of material by deflection test.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

Course Content:

COURSE CONTENT

- 1. To determine Brinell Hardness Number (BHN) for the given material of the specimen.
- 2. To determine Rockwell Hardness Number (RHN) for the given material of the specimen.
- 3. To determine the stiffness and modulus of rigidity of open coil helical spring.
- 4. To determine the stiffness and modulus of rigidity of closed coil helical spring.
- 5. To determine the impact strength for the given specimen using Charpy test.

School of Mechanical Engineering

- 6. To determine the impact strength for the given specimen using Izod test.
- 7. To determine the Young's modulus of the g material by conducting the deflection test.
- 8. To study the fatigue strength for the given specimen using Fatigue test.
- 9. To determine the Young's modulus by conducting tension test on a given mild steel specimen.
- 10. To determine the Maximum compressive strength by conducting compression test on a given specimen on UTM.
- 11. To study the strain aging behavior of steel (associated with the yield-point phenomena) using load-elongation curve obtained from tensile test.

Suggested Reading

- 1. S. S. Rattan (2011), Strength of Material, Tata McGraw Hill Education.
- S.P. Timoshenko and D.H. Young (2011), Strength of Materials, 5th edition, East West Press Ltd.
- 3. R.K. Bansal (2010), Strength of Materials, 5th Edition, Laxmi Publications.

Name of The Course	Manufacturing Processes II and Metrology Laboratory				
Course Code	BTME2013	~			¢
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	C
		0	0	2	1

Course Objectives

- 1.To learn and identify parts of a Lathe Machine and different operations on a Lathe.
- 2. To become skilled to handle and use drilling, lathe, milling and surface grinding machines.
- 3. To gain hands on practices in measurements and measuring instruments

Course Outcomes

CO1	Develop a component using basic
	operations of lathe and drilling machine.
CO2	Produce a component using milling and
002	shaper machine.
	Create a single point cutting tool with
CO3	various angles using tool and cutter
	grinder
	Measure the different measurements
CO4 using measuring instruments and analy	
	the errors.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

Course Content:

COURSE CONTENT

1.Lathe Exercise – Facing, Straight turning, knurling, chamfering, Thread cutting operations using Lathe Machine

2. Drilling - Countersinking and Tapping using Drilling Machine.

3. End milling and Gear cutting using Milling Machine.

4. Surface finishing using Surface Grinding Machine.

5. Grinding of single point cutting tool using Tool and Cutter Grinder.

6. Machining a block on shaper machine.

7. Study & working of simple measuring instruments like Vernier calipers and micrometer.

8. Measurement of effective diameter of a screw thread.

9. Measurement of angle using sine bar & slip gauges.

10. Study & angular measurement using bevel protector.

11. Measurement of various angles of SPCT (Single Point Cutting Tool-HSS) using Tool maker's Microscope.

12. Measurement of various dimensions of spur gear using Optical Profile Projector.

Suggested Reading

- 1. Manufacturing Processes II and Metrology Lab manual prepared by faculties of School of Mechanical Engineering.
- 2. Manufacturing Practices Lab Manual, SOME, Galgotias University, Dr. P. Tamilchelvan, 2016.
- 3. Metrology Lab Manual, SOME, Galgotias University, Dr. P. Tamilchelvan, 2016.
- 4.A.K. Hajra Choudhury, S.K. Hajra Choudhury and Nirjhar Roy (2010), Elements of Workshop Technology, Vol. – II, Media Promoters, ISBN: 978-8-185-09915-6.
- Manufacturing Engineering and Technology, S. Kapakjian and S.R. Schmid, 4th Edition, Pearson Education (Singapore) Pvt. Ltd. (2005) ISBN: 978-8-177-58170-6.

Name of The Course	Additive Manufacturing Laboratory				
Course Code	BTME3023				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		0	0	4	2

Course Objectives

- 1. To augment the theoretical knowldege of design to print the physical 3D mechanical components and prosthetics.
- 2. To get the hands on skill of designing to printing any mechanical or bomedical product.

Course Outcomes

CO1	Understand the concept of Parametric	
	design.	
CO2	Develop a solid model using Tinker CAD	
	and Fusion 360 software.	
CO3	Print different Mechanical Component	
CO4	Print Biomedical based prothetics	
CO5	Understand and design the basic working	
005	3D printer	

Continuous Assessment Pattern

Internal Mid Term Assessment (IA) (MTE)	End Term Exam (ETE)	Total Marks
--	------------------------------	----------------

50	-	50	100

Course Content:

COURSE CONTENT

- 1. To Learn and make simple parametric design on TinkerCAD software.
- 2. To Learn and make simple parametric design on AutoDesk Fusion 360 software.
- 3. To study different types of 3D printer in the lab, make sketch of the printer.
- 4. To Learn the circuit and microcontroller of the common FDM based 3D printer available in the lab.
- 5. To design and print the fuel injector of the IC engine.
- 6. To design and print the fuel injector of the IC engine.
- 7. To design and print the dental implant and crown.
- 8. To design and print the hearing aid.
- 9. To make Arduino or Raspberry based simple prototype of 3D printer.
- 10. To learn the programming of G-Code.

Suggested Reading

- Chee Kai Chua, Kah Fai Leong(2016), 3D
 Printing And Additive Manufacturing: Principles And Applications, WSPC
- Ben Redwood, FilemonSchöffer& Brian Garret(2017), The 3D Printing Handbook:Technologies, design and applications, 3D Hubs B.V
- Hod Lipson, M.Kurman(2013)
 Fabricated:The New World of 3D Printing, Wiley.

Name of The	Applied Thermodynamics
Course	
Course Code	BTME3021
Prerequisite	BTME2002 Engineering
-	Thermodynamics

Co-requisite				Unit II: Fuels and Combustion		
Anti-requisite			-		7 Hours	
	L	Т	Р	С		
	3	0	0	3	Introduction to Combustion analy	cic
					- Hitroduction to Combustion analy	515,

Course Objectives

- 1. To apply knowledge of basic laws of thermodynamics to engineering applications.
- 2. To acquire knowledge about various thermodynamics cycles.
- 3. To understand jet propulsion systems.

Course Outcomes

CO1	Apply thermodynamics relations for equation development of thermodynamic process.
CO2	Analyze combustion process at different operating parameters of combustible hydrocarbon fuels.
CO3	Describe steam formation and its thermodynamic behaviour for different vapour power cycles.
CO4	Explain the function and application of different types of steam turbines, nozzles and its selection criteria.
CO5	Illustrate the fundamental of gas turbine cycles and jet propulsion system with its application area.
CO6	Able to know about application of thermodynamic in advance level of thermodynamic

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
30	20	50	100

Course Content:

Unit I: Thermodynamic relations Hours

Tds equations, Maxwell relations, Clapeyron equation,Joule-Thompson coefficient and InVersion 2.1curve, General Relations for Change in Entropy,Enthalpy, Internal Energy and Specific Heats, Coefficient of volume expansion, Adiabaticand Isothermal compressibility. Introduction to Combustion analysis, Classification of Fuels, Combustion Equations,Theoretical Air and Excess Air, Stoichiometric Air Fuel (A/F) Ratio , Air-Fuel Ratio fromAnalysis of Products, ConVersion 2.1of Volumetric Analysis to Weight Analysis, ConVersion 2.1ofWeight Analysis to Volumetric Analysis, Weight of Carbon in Flue Gases,Weight of FlueGases per kg of Fuel Burnt , Analysis of Exhaust and Flue Gas, Calorific or Heating Values of Fuels.

Unit III: Vapour Power Cycles 9 Hours

Phase Change of a Pure Substance, Formation of Steam, Thermodynamic Properties of Steamand Steam Tables, Carnot Cycle, Rankine Cycle, effect of pressure and temperature onRankine cycle, Reheat Cycle, Regenerative Cycle, open and closed feed water heaters, BinaryVapour Cycle.

Unit IV: Steam Turbines and Nozzles 9 Hours

Classification of steam turbine, Impulse and turbines. Stage Reaction Staging, and Overallefficiency, Reheat factor, Bleeding. Velocity diagram of simple and compound multistageimpulse and reaction turbines and related calculations, work done, efficiencies of reaction,Impulse reaction turbines, state point locus, Losses in steam turbines, Governing of turbines,Flow through Convergent and convergent-divergent nozzles, variation of velocity, area and specific volume, Choked flow, throat area, Nozzle efficiency, Off design operation of nozzle, Effect of friction on nozzle, Super saturated flow.

Unit V: Gas Turbine and Jet Propulsion 8 Hours

7

Gas turbine classification, Brayton cycle, Principles of gas turbine, Gas turbine cycles withintercooling, reheat and regeneration and their combinations, Stage efficiency, Polytropicefficiency, Deviation of actual cycles from ideal cycles, Introduction to the principles of jetpropulsion, Turbojet and turboprop engines and their processes, Principle of rocketpropulsion, Introduction to Rocket Engine.

Unit VI:

Thermodynamics of heat recovery systems, alternative refrigeration system, supercritical power cycle study

Suggested Reading

1.P. K. Nag (2010), Basic and Applied Thermodynamics, Tata McGraw-Hill PublishingCompany Ltd., ISBN 978-0-070-15131-4.

2. R. K. Rajput, Applied Thermodynamics, Laxmi Publications Pvt Ltd; Second edition.

3. Yunus A. Cengel and Michael A. Boles, Thermodynamics, Engineering Approach, 6th Ed., McGrawHill, 2006.

4. Onkar Singh (2009) Applied Thermodynamics, New Age International. ISBN:978-8-122-42583-3.

				•		+1	Un
Name of The	Kinematics	of M	lach	ines			
Course							
Course Code	BTME3002						-
Prerequisite	BTME2001	Eng	inee	ering	g Mechanics	1	
Co-requisite						1	Int
Anti-requisite						-	Ť.
		L	Т	Р	С	(eri
		3	0	0	3	1	me

Course Objectives

- 1. To familiarize students with basic types of mechanisms, joints and degrees of freedom to perform position, velocity and acceleration analysis using graphical and analytical methods.
- 2. To provide students an understanding of different types of mechanisms.

- 3. To teach the basics of synthesis of simple mechanisms.
- 4. To teach students the kinematic analysis of cam-follower motion and gear train configurations.

Course Outcomes

CO1	Understand the concepts of various mechanisms and pairs.
CO2	Analyze the displacement, velocity and acceleration of different links in a simple mechanism.
CO3	Synthesize simple mechanisms based on the given input conditions.
CO4	Draw the profile of cam for different types of follower motions.
CO5	Apply kinematics principle to gears operation.
CO6	Model and analysis of mechanism

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
30	20	50	100

Course Content:

ines	Unit I: Basics of Mechanisms				
	8 Hours				
ering Mechanics	Introduction to mechanisms and its terminologies – Degree of freedom – Mobility – Kutzbach				
P C	criterion – Grubler's criterion for planar				
0 3	mechanisms – Grashoff's law – Kinematic				
basic types legrees of elocity and phical and	InVersion 2.2s of 4-bar chain – Single slider and double slider crank chains – Quick return mechanism – Limiting positions – Mechanical advantage – Transmission angle – Ratchets and escapements – Indexing Mechanisms – Rocking Mechanisms – Straight line generators.				
tanding of	Unit II: Kinematic Analysis of Simple Mechanisms 8 Hours				

Displacement, velocity and acceleration analysis in simple mechanisms having turning, sliding and rolling pair – Coriolis acceleration using graphical relative motion method - Instantaneous center method – Four bar and slider crank mechanisms – Analytical method for four bar and slider crank mechanisms.

Unit III: Synthesis of Simple Mechanisms 8 Hours

Classification of kinematic synthesis problems – Two position synthesis of slider crank and crank rocker mechanisms – Three position synthesis of double rocker mechanism - Chebychev spacing – Freudenstein analytical method – synthesis of function generator using three precision positions, Graphical and analytical design of a four bar linkage for body guidance, path generation by graphical method.

Unit IV: Kinematics of CAMS 8 Hours

Types of cams and followers – Definitions related cam profile – Derivatives of follower motion – High speed cams – Undercutting – Graphical disk cam profile design – Simple harmonic motion, Constant acceleration and deceleration, constant velocity, Cycloidal motion for knife edge and roller (in-line and offset), flat faced and oscillating followers – Tangent cam with roller follower – circular arc cam with flatfaced follower.

Unit V: Kinematics of Gears and Gear Train 8 Hours

Spur gear terminology and definitions – Law of toothed and involute gearing – Interchangeable gears – Gear tooth action – Interference and undercutting – Basics of nonstandard gear teeth – Helical – Bevel – Worm – Rack and pinion gears, cycloidal tooth properties – Comparison of involute and cycloidal tooth forms.

Unit VI:

Model and analysis of mechanisms for different applications.

Suggested Reading

1. S.S. Rattan (2009), "Theory of Machines", 3rd Edition, Tata McGraw-Hill. ISBN: 978-0-070-14477-4.

2. J. Uicker John, Gordon R. Pennock Jr. and Joseph E. Shigly (2011), Theory of Machines and Mechanisms, 4th Edition, Oxford University Press, ISBN: 978-0-199-77781-5.

3. Thomas Bevan (2009), Theory of Machines, 3rd Edition, Pearson Education, ISBN: 978-8-131-72965-6.

4. A. Ghosh (2009), Theory of Mechanisms and Machines, 3rd Edition, East-West Press Pvt. Ltd., New Delhi, ISBN: 978-8-185-93893-6.

5. Kenneth J Waldron and Gary L. Kinzel (2007), Kinematics, Dynamics, and Design of Machinery, 2nd Edition, John-Wiley and Sons Inc., New York, ISBN: 978-8-126-51255-3.

Name of The Course	Heat and	l Ma	ass T	Fran	sfer
Course Code	BTME3	003			
Prerequisite	BTME2002 Engineering Thermodynamics, BTME2009 Fluid Mechanics				
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives

1.To understand the basic principle of heat transfer.

2. To able to analyse the system in which heat transfer takes place due to conduction, convection and radiation.

Course Outcomes

CO1 Employ the basic modes of heat transfer and analyze problems involving steady

[state hand any heading in simula		
	state heat conduction in simple		
	geometries.		
CO2	Assess the performance of fins in different applications and develop solutions for transient heat conduction in simple geometries.		
CO3	Apply the fundamentals of convective heat transfer process and evaluate heat transfer coefficients for forced and natural convection.		
CO4	Calculate radiation heat transfer between black and gray body surfaces.		
CO5	Analyze heat exchanger performance by using LMTD and NTU methods.		
CO6	Able to understand the methodologies of calculation in the case of non- participating media through advanced radiation concepts.		

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
30	20	50	100

Course Content:

Unit I: Conduction – I 9 Hours

Basic concepts, conduction, convection and radiation, Laws, General equation of heat conduction, Derivation in Cartesian, cylindrical and spherical coordinates. One dimensional steady state heat conduction in simple geometries, plane wall, cylinder and sphere, Heat transfer composite walls, composite cylinders and thickness composite spheres, Critical of insulation, Thermal contact resistance, Overall heat transfer coefficient, Electrical analogy, Heat generation in plane wall, cylinder and sphere, Extended surfaces, general equations, types and applications of fins, Fin efficiency and effectiveness, Fin performance.

Unit	II:	Conduction
8 Hours		

Two and Three dimensional steady state heat conduction, Analytical, Graphical and Numerical methods, Conduction shape factor, Unsteady state heat conduction, Lumped parameter system, Nondimensional numbers in conduction, Significance of Biot and Fourier numbers, Transient heat flow in semi-infinite solid, Use of Heisler and Grober charts.

Unit	III:	Convection
8 Hours		

Boundary layer theory, Conservation equations of mass, momentum and energy for laminar flow over a flat plate, Turbulent flow over a flat plate, Flow over cylinders, spheres, tube bank, Internal flow through pipes, annular spaces, Analogy between momentum and heat transfer, Natural convection in vertical, inclined and horizontal surfaces, Mixed convection, Dimensional analysis.

Unit IV: Condensation, Boiling and Radiation 8 Hours

Condensation and Boiling, Film wise and drop wise condensation, Film condensation on a vertical plate, Regimes of Boiling, Forced convection boiling, Radiation heat transfer, Thermal radiation, Laws of radiation, Black body concept, Emissive power, Radiation shape factor, Gray bodies, Radiation shields.

Unit V: Heat Exchangers and Mass Transfer 7 Hours

Heat Exchangers, Types and practical applications, Use of LMTD, Effectiveness, NTU method, Compact heat exchangers, Plate heat exchangers, Fouling factor, Heat pipes, Types and applications, Principle of Mass Transfer-Mass transfer by molecular diffusion, Fick's law of diffusion, Analogy of heat and mass transfer. Waste Heat recovery systems.

Unit VI:

Numerical radiation phenomena. Specific intensity of radiation. General formulation of the fundamental equation of radiation (RTE or Radiative Transfer Equation). Review of methods of analysis of radiation in non-participating media. Extension of the formulation to participating media. Introduction to numerical resolution techniques of intensity of spectral and directional radiation according to the DOM (Discrete Ordinate Methods) and FVM (Finite Volume Method) methods.

Suggested Reading

- 1. R. C. Sachdeva (2005), Fundamentals of Heat and Mass Transfer, New AgeInternational (P) Ltd. ISBN: 978-8-122-40076-2.
- P.K Nag, Heat and Mass Transfer, McGraw-Hill PublishingCompany Limited, ISBN: 9780070702530
- 3. J. P. Holman (2005), Heat Transfer, 9th Edition, McGraw-Hill PublishingCompany Limited. ISBN: 978-0-070-29618-3.
- Dewitt Lavine, Bergmann and Incropera (2010), Fundamentals of Heat andMass Transfer, 6th Edition, John Wiley & Sons, ISBN: 978-8-126-52764-9.

Name of The Course	Automobile Engineering				
Course Code	BTME3026				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		2	0	0	2

Course Objectives

- 1. To broaden the understanding of students in the structure of vehicle chassis and engines.
- 2. To introduce students to steering, suspension, braking and transmission systems.
- 3. To introduce students to engine auxiliary systems like heating, ventilation and air-conditioning and also the importance of alternate fuels.

	Demonstrate the knowledge of				
CO1	components of different automobile				
	systems.				
CO2	Identify different fuel supply and injection				
02	systems, and link emissions with them.				
CO3	Perform the study of clutch and relate with				
COS	modern transmission systems.				
CO4	Classify suspension, steering and braking				
C04	cO4 classify suspension, seering and braking systems.				
CO5 Illustrate the working of modern					
05	automobile equipments/systems.				

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
30	20	50	100

Course Content:

Unit I:Introduction to	Vehicle Structure an	d
Alternate Fuels	8	
Hours		

Vehicle construction, Chassis and body, Specifications, Engine, Types, Construction, Location of engine, Cylinder arrangement, Construction details, Cylinder block, Cylinder head, Cylinder liners, Piston – piston rings, Piston pin, Connecting rod, Crankshaft, Valves. Lubrication system, Types, Oil pumps, Filters, Cooling system, Types, Water pumps, Radiators, Thermostats, Anti-freezing compounds, Ignition system

Unit II:Ignition, Fuel Supply and EmissionControl System8 Hours

Coil and Magneto, Spark plug, Distributor – Electronic ignition system, Fuel system, Carburetor, Fuel pumps, Fuel injection systems, Mono point and Multi point – Module injector – Nozzle types, Electronic Fuel Injection system (EFI), Automobile Emissions, Source of formation – Effects on human health and environment, Control techniques, Exhaust Gas Recirculation (EGR), Catalytic converter, Emission tests and standards (Indian and Europe).

Course Outcomes

Unit III:Transmission System 8 Hours

Clutches, Function, Types, Single plate, Multiple plate and Diaphragm Clutch, Fluid coupling, Gearbox, Manual, Sliding, Constant, Synchromesh, Overdrive, Automatic transmission, Torque converter, Epicylic and Hydromatic transmission, Continuously variable transmission, Universal joint, Propeller shaft, Hotchkiss drive – Final drive, Rear axle assembly, Types,Differential, Need, Construction – Non-slip differential – Differential locks, Four wheel drive.

Unit IV:Steering, Suspension and Braking System 7 Hours

Principle of steering, Steering Geometry and wheel alignment, Steering linkages – Steering gearboxes, Power steering, front axle, Suspension system, Independent and Solid axle – coil, leaf spring and air suspensions, torsion bar, shock absorbers, Wheels and Tires, Construction, Type and specification, Tire wear and causes, Brakes, Needs – Classification –Drum and Disc Mechanical, Hydraulic and pneumatic, Vacuum assist – Retarders

Unit V:Instrumentation and Advances in Automobile Engineering 9Hours

Dash board instrumentation, Passenger comfort, Safety and security, HVAC, Seat belts, Air bags, Automotive Electronics, Electronic Control Module (ECU), Common-Rail Diesel Injection (CRDI) – Multipoint fuel injection system(MPFI), Gasoline Direct Injection (GDI), Variable Valve Timing (VVT), Active Suspension System (ASS), Anti-lock Braking System (ABS), Electronic Brake Distribution (EBD) – Electronic Stability Program(ESP) Traction Control System (TCS), Global Positioning System (GPS), X-bywire, Electric, Hybrid vehicle

Suggested Reading

- 1. William.H.Crouse (2006), Automotive Mechanics, 10th Edition, McGraw-Hill, ISBN: 978-0-07-063435-0.
- Kirpal Singh (2011), Automobile Engineering, 12th edition, Standard Publications, ISBN: 978-8-180-14177-5.

- Joseph Heitner (1999), Automotive Mechanics: Principles and Practices, 2nd edition, Affiliated East West Pvt. Ltd, ISBN: 978-8-176-71015-2.
- 4. Bosch Automotive Hand Book (2007), 8th Edition, SAE Publications, ISBN: 978- 0-7680-4851-3.
- K. Newton and W. Steeds (2001), The motor vehicle, 13th Edition, Butterworth-Heinemann Publishing Ltd, ISBN: 978-0-080-53701-6

Name of The Course	Machine Desi	ign			
Course Code	BTME3025				
Prerequisite	BTME2008				
Co-requisite	BTME3002				
Anti-requisite					
		L	Т	Р	C
		2	0	2	3

Course Objectives

- 1. To understand the design methodologies for various machine elements.
- 2. To understand the various standards and methods of standardization
- 3. To produce working drawings of the system involving shafts, couplings, joints and bearings.

Course Outcomes

CO1	Understand and implement the design					
cor	process in machine elements.					
	Apply fatigue failure criteria in the					
CO2	analysis and design of mechanical					
	components.					
	Design and analyze the power					
CO3	transmission in shafts and couplings					
005	carrying different elements under various					
	loading conditions.					
	Design and analyze the permanent and					
CO4	detachable structural joints under various					
	loading conditions.					
CO5	Design and analyze the sliding and rolling					
005	contact bearings.					
CO6	Model and analyse gear					

Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)		

		Exam (ETE)	
30	20	50	100

Course Content:

Unit I: Introduction to Design Process 9 Hours

Introduction to Design process – Factors – Materials selection direct – Bending and Torsional stress equation – Impact and Shock loading - -Factor of safety – Design stress – Theories of failures — Design of Levers, Problems.

Unit II: Fatigue strength and design of springs 9 Hours

Stress concentration factor – Size factor –Surface limits factor ,Variable and cyclic loads – Fatigue strength – S- N curve – Continued cyclic stress – Soderberg and Goodman equations – Design of Helical – Leaf – Disc springs under Constant loads.

Unit III:Design of Shafts and Coupling 7 Hours

Design of Shafts carrying various elements with geometrical featuresunder various loading conditions, Design and drawings of couplings – Rigid – Flexible

Unit IV:Design of Joints

9 Hours

Design and Drawings of Cotter joints – Knuckle joints, Riveted joints, Welded joints and Screwed fasteners

Unit V: Design of bearings 6 Hours

Design of sliding contact bearing using Sommerfield number – Design using Mckee'sequation – Selection of rolling contact bearings.

Unit VI:

Gear geometry – Kinematics – Forces on gear tooth – Stresses in Gear tooth Selection of gear material based on bending stress

Suggested Reading

- V.B. Bhandari (2010), Design of Machine elements, 3rd Edition, Tata McGraw Hill.ISBN: 978-0-070-68179-8.
- V.B. Bhandari (2014), Machine Design Data Book, 1stEdition, Tata McGraw Hill. ISBN: 978-9-351-34284-7.
- Joseph Edward Shigley and Charles, R. Mischke (2011), Mechanical Engineering Design, 9th Edition,McGraw –Hill International Editions, ISBN: 978-0-071-07783

Name of The	Applied Thermodynamics &					
Course	HMT Lab					
Course Code	BTME3004					
Prerequisite	BTME2002 Engineering					
-	Thermodynamics					
Co-requisite	BTME3001 Applied					
-	Thermodynamics					
Anti-requisite						
	L T P C					
		0	0	2	1	

Course Objectives

- 1. Identify the various parts of IC engines and explain its functions for running the engines.
- 2. Evaluate the performance characteristics of air compressor.
- 3. Study of the effect of forward, backward, curved and radial vanes of the centrifugal blower.

Course Outcomes

CO1 Examine the performance of compressors and blower.

CO2	Analyze the performance of vapour compression refrigeration system at different operating conditions.					
CO3	Demonstrate the working of air- conditioner and its psychrometric test.					
CO4	Calcualte the heat transfer co-efficient for free and forced convection.					
CO5	Calculate the heat transfer coefficient for parallel flow, counter flow heat exchangers, and study the radiation heat transfer phenomenon.					

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

Course Content:

LIST OF EXPERIMENTS

- 1. To find out the volumetric efficiency, isothermal power and isothermal efficiency of air Compressor.
- 2. To study the effect of forward, backward, curved and radial vanes and find out the discharge, head and overall efficiency of the centrifugal blower.
- 3. To study the different components of vapour compression refrigeration system.
- 4. To calculate the actual Coefficient of Performance of Vapour compression refrigeration cycle on VCR test Rig and compare with theoretical COP using p-h diagram.
- 5. To determine various psychrometric properties on Air conditioning test Rig.
- 6. To calculate total thermal resistance and thermal conductivity of composite wall.
- 7. To calculate the average heat transfer coefficient of vertical cylinder under natural convection.
- 8. To calculate the heat transfer coefficient experimentally and theoretically for free and forced convection and compare the theoretical temperature distribution with experimentally obtained distribution.
- 9. To determine the value of Stefan-Boltzman constant for radiation heat transfer.

10. To study and compare temperature distribution, heat transfer rate, overall heat transfer coefficient in parallel flow and counter flow heat exchanger.

Suggested Reading

Lab manuals prepared by faculty.
 NPTEL study materials

Name of The	Structural and Fluid flow analysis lab				
Course					
Course Code	BTME3024 BTME2008, BTME2009, BME202				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	P	С
		0	0	2	1

Course Objectives

1. Hands on experience of applying the conceptual knowledge of structural and fluid mechanics using commercial software like ANSYS, ICEMCFD and FLUENT.

2. Enable students to understand meshing methods, mesh refinement, boundary definition, solver and perform result analysis.

3. Enable the student to have a clear understanding of the design and analysis of Structural and fluid mechanics real world problem.

Course Outcomes

C01	Perform simulation and analysis of 2D
	and spatial Truss.
CO2	Perform simulation and analysis of beam
02	and bar.
CO3	Create simple design/geometry in
005	solidworks/design modellar
CO4	Use ICEMCFD/ANSYS meshing for pre-
004	processing
CO5	Set up fluid flow problem in FLUENT
005	and analyze the post process data

Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	

-

50 Course Content: 100

COURSE CONTENT

1. Perform simulation and structural analysis of 2D and spatial Truss.

50

- 2. Perform Stress and deflection analysis in beams with different support conditions.
- 3. Stress analysis of flat plates and simple shells.
- 4. Modeling and stress analysis of Bars of constant cross section area, tapered cross section area and stepped bar.
- 5. Dynamic(Mode frequency) analysis of fixed beam and bar subjected to forcing function
- 6. Design and analysis of Knuckle joint
- 7. Numerical simulation of Flow past cylinder using commercial software
- 8. Numerical simulation of Flat plate boundary layer using commercial software
- 9. Numerical simulation of Laminar flow through pipe using commercial software
- 10. Numerical simulation of Flow over a NACA 0012 airfoil using commercial software
- 11. Simulation of fluid flow in mixing elbow
- 12. Simulation of Turbulent Flow over the Ahmed Body
- 13. Simulation of Laminar Pipe Flow with Convection
- 14. Drag prediction of automobile vehicle through numerical simulation
- 15. Two mini project intended to test the holistic understanding of use and application of ANSYS

Suggested Reading

- 1. 1. Lab Manual prepared by SOME
- 2. S. S. Rattan (2011), Strength of Material, Tata McGraw Hill Education.
- J. Z. Zhu, OlgierdZienkiewicz, and Robert Leroy Taylor(2015). The Finite Element Method: Its Basis and Fundamentals,6th Edition, Tata McGraw Hill Education.
- 4. User Manual, Tutorial guide of FLUENT

5. User Manual of ICEMCFD

Name of The Course	Dynamics of Machines						
Course Code	BTME3008						
Prerequisite	BTME3002 Kinematics of Machines						
Co-requisite							
Anti-requisite							
		L	Τ	P	С		
		3	0	0	3		

Course Objectives

- 1. 1. To understand the concepts of turning moment diagrams, flywheel design and the dynamics of reciprocating engines.
- 2. To understand the balancing procedures for rotating and reciprocating masses, rotors and engines.
- 3. To understand the fundamentals of free and forced vibrations.
- 4. To understand the mechanisms for control.

Course Outcomes

C01	Conduct dynamic force analysis of various							
COI	systems.							
	Describe static and dynamic balancing of							
CO2	high speed rotary and reciprocating							
	machines.							
CO3	Analyze free and forced vibrations of							
005	machines, engines and structures.							
CO4	Calculate the frequency of transverse and							
004	torsional vibration systems.							
	Calculate gyroscopic couple and its effect							
CO5	on various vehicles, and apply the concept							
	of governors for speed control.							
CO6	Able to perform 38 odelling and							
	simulation of dynamic system.							

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
30	20	50	100

Course Content:

Unit I: Dynamic Force Analysis

Hours

D'Alembert's principle – Equivalent offset inertia force – Dynamic analysis of four bar mechanism – Dynamic Analysis of reciprocating engines – Piston effort, Crank effort, Turning moment on crankshaft, Inertia of connecting rod – Inertia force in reciprocating engines (Graphical method). Turning moment diagrams – Single and multi cylinder engines – Fluctuation of energy – Fly Wheels – Applications in engines and punching presses.

Unit II:Balancing

8 Hours

8

Static and Dynamic balancing of rotating masses – Balancing of reciprocating masses – Balancing of locomotives – Partial balancing of reciprocating masses – Multi cylinder Inline and radial engines.

Unit III: Vibration – Singh Degree of Freedom Systems 8 Hours

Introduction to vibration – Terminology – Classification of vibrations –Undamped and Damped free vibration of single degree of freedom systems – Viscous damping – Introduction to coulomb damping. Forced vibration – harmonic excitation – Magnification factor – Vibration isolation and Transmissibility.

Unit IV: Transverse and Torsional Vibration Systems 8 Hours

Transverse vibrations of shafts and beams – Rayleigh's and Dunkerley's method – Whirling of shafts. Torsional vibrations – Single rotor, two rotors and three rotors systems – Free vibration of geared systems.

Unit V: Mechanism for Control 8 Hours

Functions of Governors – Gravity controlled and Spring controlled governor characteristics. Stability – Hunting and Isochronisms. Effect of friction – Calculation of equilibrium speeds and ranges of speed of governors. Gyroscopic couple – Gyroscopic effects on the movement of air planes and ships – Stability of two wheel drive and four wheel drive – Gyroscope stabilization.

Unit VI

Simulation of dynamic system, Balancing techniques, Modeling and Control of Vibration in Mechanical Structures, Damping mechanism, vibration isolation technologies.

Suggested Reading

- 1. 1. S.S. Rattan (2009), "Theory of Machines", 3rd Edition, Tata McGraw-Hill Publishing Company Ltd, ISBN: 978-0-070-14477-4.
- J. Uicker John, Gordon R. Pennock Jr., and Joseph E. Shigly (2009), Theory of Machines and Mechanisms, 3rd Edition, Oxford University Press, ISBN: 978-0-198-06232-5.
- J. Peter Sadler and Charles E. Wilson (2008), Kinematics and Dynamics of Machinery, 3rdPearson Education, ISBN: 978-8-131-72022-6.
- 4. A. Ghosh (2009), Theory of Mechanisms and Machines, 3rd Edition, East-West Press Pvt. Ltd., New Delhi, ISBN: 978-8-185-93893-6.
- T Thomson William, Dillon Dahleh Marie and PadmanabhanChandramouli (2008), Theory of Vibration with applications, 5th Edition, Pearson Education Publishers, ISBN: 978-8-131-70482-0.

Name of The Course	CAM & Automation						
Course Code	BTME3009						
Prerequisite	BTME3008 Machine Design						
Co-requisite							
Anti-requisite							
		L	Τ	P	С		
		3	0	0	3		

Course Objectives

- 1. To understand the importance use of computer hardware applied in an CAM environment.
- 2. To know about the NC and CNC machine and part programming to produce a component.

3. To get acquinted with automation of an industry and CIM.

Course Outcomes

CO1	Explain the input and output devices of a computer.
CO2	Prepare a program to produce a component on CNC mahines.
СОЗ	Group the parts produced into families so that he can arrange the machines accordingly.
CO4	Apply advanced concepts in computer integrated manufacturing.
CO5	Apply the knowledge gained in CAM and automation to suggest how to make an industry automated
CO6	Able to identify, characterize and select the ideal materials for a given Rapid Prototyping system and intelligent information system.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
30	20	50	100

Course Content:

Unit I: Computer Hardware 8 Hours

Product Development Cycle – Introduction to CAM – Graphics input devices- cursor control devices, Digitizers, Scanners, speech oriented devices and touch panels, Graphics displaydevices – CRT, color CRT monitors, DVST, Flat- panel display, Graphics output Devices –Printers and Plotters – Graphics Standards – Neutral File formats –IGES, STEP.

Unit II: CNC Machine Tools 8 Hours

Introduction to NC, CNC, DNC- Manual part Programming – Computer Assisted PartProgramming – Examples using NC codesAdaptive Control – Canned cycles and subroutines –CAD / CAM approach to NC part programming – APT language, machining from 3D models.

Unit III: Group Technology, CAPP and FMS 8 Hours

Introduction to part families-parts classification and cooling – group technology machine cellsbenefits ofgroup technology – Process Planning – CAPP & types of CAPP – Flexible manufacturing systems (FMS)– the FMS concept-transfer systems – head changing FMS – Introduction to Rapid prototyping,Knowledge Based Engineering.

Unit IV: Automation

8 Hours

Introduction to automation-Basic Elements of an Automated System, Advanced AutomationFunctions, Levels of Automation, Industrial Control Systems, Continuous Versus Discrete Control, Computer Process Control.

Unit V: Computer Integrated Manufacturing 8 Hours

CIM wheel – CIM Database- CIM-OSI Model– Networking Standards in CIM Environment – Network structure – Network architecture – TCP/IP, MAP – Virtual Reality, Augmented Reality-Artificial Intelligence and Expert system in CIM.

Unit VI:

Reverse Engineering: Introduction to reverse engineering and its integration with rapid prototyping, industry 4.0,cyber-physical systems (CPS), the internet of things (IoT), industrial internet of things (IIOT), cloud computing, cognitive computing and artificial intelligence usage in manufacturing, Intelligent Information Systems, - Knowledge based product and process models – Applications of soft computing in product development process.

Suggested Reading

- 1. Mikell P. Groover (2008), Automation, Production Systems and Computer Integrated Manufacturing, 3rd Edition, Pearson Education. ISBN: 978-8-120-33418-2.
- 2. Ibrahim Zeid (2009),Mastering CAD/CAM, 2nd Edition, Tata McGraw Hill International Edition, ISBN: 978-0-070-15134-5.
- 3. P N Rao (2010), CAD/CAM Principles and Applications, 3rd Edition, Tata McGraw-Hill Education, ISBN: 978-0-070-68193-4.
- 4. James A. Rehg and Henry W. Kraebber (2004),Computer Integrated Manufacturing, 3rd Edition, Pearson Education, ISBN: 978-0-131-13413-3
- 5. Mikell P. Groover and Emory W. Zimmers (2003), CAD/CAM: Computer Aided Prentio 58416

	Possess the knowledge of system					
CO1	components of refrigeration and air					
	conditioning.					
CO2	Design and implement refrigeration and					
02	air conditioning systems using standards.					
	Apply the knowledge of psychrometry in					
CO3	calculating cooling load and heating load					
	calculations.					
CO4	able to know about advance refrigerants,					
04	environment protocol,					
	Able to understand about alternative or					
CO5	green refrigeration for commercial					
	application and industrial AC plant					

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

		1		_				
Aided Design and Manufacturing,				Unit I: Refrigeration Cycles and Refrigerants				
Prentice Hall Edition, ISBN: 978-8-177-				8 Hours				
58416-5.								
					Vapour compression refrigeration cycles-Air refrigeration cycles-Simple saturated vapour gompression refrigeration cycle-P-H charts -			
Name of The	Refrigeration and Air-C	ondit	tionin	g				
Course					Multi stage compression –Multi evaporator			
Course Code	BTME3067				system-cascade system-Vapour absorption			
Prerequisite					systems.			
Co-requisite					Unit II:System Components			
Anti-requisite					5 Hours			
	L	Т	Р	C				
	3	0	0	3	Refrigeration classification –Designation-			
Ū	Course Objectives			Alternate refrigerants –Global warming and Ozone depleting aspects. Refrigerant compressors Reciprocating –Rotary – Condensers –				
air conditioning	· ·				Evaporators - Expansion devices - Cooling			
	the cooling load for dif of Refrigeration and	feren Air			towers.			
	nciples of psychrometry				Unit III: Cycling Controls and System			
 To learn the principles of psychrometry. To develop the knowledge of selecting the right 			Balancing 8 Hours					
	a particular application	•						
Refrigeration a	Refrigeration and Air-conditioning			Pressure temperature control range and different				
			settings - Selection and balancing of system					
Course Outcomes	Course Outcomes			components - Graphical method.				

41

Unit IV : Psychrometry

9 Hours

Moist air properties - Psychrometric chart - Different Psychrometric process analysis.

Unit V: Air Conditioning

9 Hours

Air conditioning systems – classification -Cooling load calculations - different types of loads - GRSHF - ERSHF - Estimation Of total load - Air distribution patterns - Dynamic and frictional losses in air ducts - Equal friction method - Fan characteristics of duct system.

Unit VI

Study of future and nano refrigerants, study of green & sustainable cooling technology and its commercial application, study of industrial ac plant & automobile ac system, solar refrigeration techniques

Suggested Reading

- 1. Arora, C. P., (2008), Refrigeration and Air Conditioning, Tata McGraw-Hill Publishing Company Ltd.ISBN: 978-0-070-08390-5.
- 2. Manohar Prasad, (2003), Refrigeration and Air conditioning, New Age International.ISBN : 978-81-224-1429-5
- 3. W. F. Stocker and J. W. Jones, (2002), Refrigeration and Air conditioning, McGraw Hill.ISBN: 978-0-070-66591-0.

Name of The	Dynamics of Machines Laboratory						
Course							
Course Code	BTME3010						
Prerequisite							
Co-requisite	BTME300	8 Dyn	ami	cs of	f Machines		
Anti-requisite							
	L T P C						
	0 0 2 1						

Course Objectives

- 1. To supplement the principles learnt in Kinematics and Dynamics of Machinery.
- 2. To understand how certain measuring devices are used for dynamic testing.

Course Outcomes

CO1	Calculate natural frequency of longitudinal vibration.
CO2	Determine torsional frequency of a single rotor system.
CO3	Measure the magnitude of gyroscopic couple in a motorized gyroscope.
CO4	Compare Tri–Filar / Bi-Filar system for determining moment of inertia of an object.
CO5	Calculate the critical speed of a shaft and determine the performance characteristics of governors.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

Course Content:

LIST OF EXPERIMENTS

- 1. To determine natural frequency of longitudinal vibration in spring mass system.
- 2. Determination of torsional frequency of a single rotor system.
- 3. To study nomenclature of cam and plotting the cam profile.
- 4. To determine gyroscopic couple on motorized gyroscope.
- 5. Comparative study of different types of clutches
 - To determine the frequency of un-damped free vibration of an equivalent spring mass system.
 - To perform experiment on Watt and Porter governors to determine performance
 - Comparative study of static and dynamic balancing inrotors.
- 9. To find out critical speed and to compare the whirling speed of a shaft.

- 10. To study TRI –FILAR / BI-FILAR System 11. Comparative study of different types of
- clutches

Suggested Reading

1. S.S. Rattan (2009), "Theory of Machines", 3rd Edition, Tata McGraw-Hill Publishing Company Ltd, ISBN: 978-0-070-14477-4.

J. Uicker John, Gordon R. Pennock Jr., and Joseph E. Shigly (2009), Theory of Machines and Mechanisms, 3rd Edition, Oxford University Press, ISBN: 978-0-198-06232-5.

Name of The	Energy systems and						
Course	Technol	Technologies					
Course Code	BTME4	001					
Prerequisite	BTME2002 Engineering						
_	Thermodynamics,						
	BTME 2009 Fluid Mechanics						
Co-requisite							
Anti-requisite							
		L	Т	Р	С		
		3	0	0	3		

Course Objectives

- 1. To apply knowledge of basic laws of thermodynamics to compressors.
- 2. Describe the operating characteristics of hydraulic machinery (pumps and turbines), and the factorsaffecting their operation and specifications, as well as their operation in a system..
- 3. To understand the working of key components of conventional and non conventional power plants.

Course Outcomes

	Calculate the thermal efficiencies of				
CO1	blowers and compressors, and identify the				
	common problems in compressor				
	working.				
CO2	Evaluate the pump output and efficiencies				
02	of different hydraulic pumps.				
CO3	Explain working of hydraulic turbines and				
COS	its perfromance evaluation.				
CO4	Demonstrate conventinal power				
004	generation systems and their components.				
CO5	Demonstrate non conventinal power				
	generation systems and their components.				

CO6	Able to learn about new trends of energy
	conversion systems

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
30	20	50	100

Course Content:

Unit	I:	Fans,	Blowers	and	Compressors
9 Hot	irs				

Construction details of Centrifugal fans, blowers and compressors, stage work, Stage pressure rise, Stage pressure co-efficient, Stage efficiency, Degree of reaction, Various slip factors, h-s diagram for centrifugal compressor.

Axial flow Fans and Compressors, Stage velocity triangles, Blade loading and flow co- efficient, Static pressure rise, h-s diagram, Degree of reaction, Work done factors, Free and Forced Vortex flow performance, Stalling and Surging. Construction details of Reciprocating compressors, working, Effect of clearance volume, Multi staging, Volumetric efficiency, Isothermal efficiency.

Unit	II:	Hydraulic	Pumps
8 Hours			

Centrifugal pumps, Work done, Head developed, Pump output and Efficiencies, priming, minimum starting speed, performance of multistage pumps, cavitation and methods of prevention, Pump characteristics, Constructional details of axial flow pumps, characteristics, Non-dimensional parameters, Efficiencies, Reciprocating pumps, Work done and efficiency, Vibration and Noise in hydraulic pumps.

Unit III: Hydraulic Turbines 9 Hours

Classification of hydraulic turbines, Pelton wheel, Francis turbine, Kaplan and Propeller turbines, Velocity triangles, Specific speed, Theory of draft tube, Governing, Performance characteristics, Selection of turbines.

Unit IV: Introduction to power plants 8 Hours

Classification, Selection of site, Steam power plants – Fire tube and Water tube boilers, Feed water treatment, Cooling Tower, Pulverized coal firing systems, Electrostatic precipitator, Nuclear power plants – working principle and basic components, pressurized water reactor, Hydro power plants – basic components, function and details of Reservoirs, Dam, Trash Rack, Forebay, Surge Tank, Penstock, Spillway, Prime Mover and Generator, Draft Tube.

Unit V: Non Conventional Power Plants 6 Hours

Introduction to Non Conventional energy resources, Basic Components of Solar power plant, principle and working, Basic Components of Wind power plant, principle and working.

Unit VI

Overview of tri-generation system and its analysis, kalina system of combined cooling and power generation, solar integrated power generation and refrigeration system. study of energy efficient heat recovery energy materials

Suggested Reading

- S. S. Rattan (2011), Fluid Mechanics and Hydraulic Machines, Khanna Publishers, ISBN: 978-8-187-52246-1.
- R. K. Rajput, (2008), A Text Book of Power Plant Engineering, 4th Edition Laxmi Publications (P) Ltd. ISBN: 978-81-318-0255-7.
- 3. S.M. Yahya, (2010), Turbine, Fans and Compressors, TMH, 2010
- P.K. Nag, Power Plant Engineering, Tata McGraw-Hill Publishing Company Ltd., ISBN: 9789339204044.

Name of The	Project Management					
Course						
Course Code	BME4010					
Prerequisite						
Co-requisite						
Anti-requisite						
		L	Т	Р	С	
		1	0	0	1	

Course Objectives

- 1. To acquaint students with basic concepts of the Project Management and its uses in real life situation, the formulation of the problems and basic insight of Capital Budgeting decision.
- 2. To be able to recognize and analyse the Market – Demand & Supply factors affecting the Project Execution and study risk factors associated with Project Management.
- 3. To know how to plan, organize and control the resources to achieve specific goals.

Course Outcomes

CO1	Explain basic concepts of the Project Management and its uses in real life situation.			
CO2	Take decisions about Capital Budgeting.			
CO3	Analyze the Market – Demand & Supply factors affecting the Project Execution.			
CO4	Select the risk factors associated with Project Management.			
CO5	Plan, organize and control the resources to achieve specific goals.			

Continuous Assessment Pattern

Inter Assess (L4	sment	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	0	30	50	100

Course Content:

Unit I: Introduction to Project Management 8 Hours

Introduction to Project Management, Uses, scope and applications of Project Management in managerial decision-making, Characteristics of Projects, Classification of Projects: National & International, Project Management: Tools and Techniques, Roles and Responsibilities of Project Manager, Project Life cycle, Project Selection Process.

Unit II: Capital Expenditure Decisions 8 Hours

Meaning and features of capital budgeting decisions, Importance of capital budgeting decisions, Kinds of capital expenditure decisions, Capital expenditure budgeting process, Criteria of capital budgeting, Resource allocation framework and budgeting difficulties.

Unit III: Market Demand Analysis 8 Hours

Information required for marketing and demand analysis, Information required for marketing and demand analysis, Secondary sources of information, Market survey, Demand forecasting, Uncertainties in demand forecasting, Coping with uncertainties: Technical and Financial Analysis.

Unit IV: Determination of Risk factors 8 Hours

Analyses of Project Risk, Market Risk and Firm Risk, Social-Cost, benefit analysis: Need for social cost benefit analysis, Main feature of social cost benefit analysis: UNIDO approach, Little-Mirrless approach.

Unit V: Network Analysis

8 Hours

Rules for drawing the network diagram, Application of CPM and PERT techniques in project planning and control, Illustration by taking numerical examples on CPM and PERT, Case Study: **China Telecom Corporation uses PMI standards to develop communications network for Nanshan District.**

Suggested Reading

1. Project Management, Prasanna Chandra, Mc. Graw Hill

- 2. Project Management, S Chaudhry, Tata Mc. Graw Hill.
- 3. Total Quality Management, P.K. Joy, Macmillan Indian Ltd.
- 4. Project Finance, H.R. Machiraju, Vikas Publishing House
- Project Management in Practice, Meredith, Jack R., Sutton, Margaret M., Shafer, Scott M., Wiley.

Name of The	Optimization Techniques and					
Course	Applications					
Course Code	BTME4005					
Prerequisite						
Co-requisite						
Anti-requisite						
		L	Т	Р	C	
		2	0	0	2	

Course Objectives

- 1. To understand the role of optimization in Engineering design and its importance
- 2. To introduce the different optimization techniques for constrained and unconstrained problems

Course Outcomes

CO1	Study and analyze different techniques of optimization and its applications
CO2	Formulate the design problem in mathematical form which can be solved by suitable optimization algorithm
CO3	Optimize the constrained and unconstrained design problem
CO4	Compare the efficiency of different algorithms.
CO5	Formulate and solve constrained optimization problems of linear and non- linear programming

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

	Optimization Methods			
4				
lecture hours				
Introduction, Optimiza	ation methods in			
Engineering, Characteria				
Models, Application in				
General Method of Optim	mization, Limitation of			
Optimization Models				
Unit II: Unconstrai				
Optimization Unconstrained Optimizati	8 lecture hours			
Unconstrained Optimizati	ion: Optimizing Single-			
Variable Functions usin				
Maxima-Minima Method	▲ ·			
and Global Maxima and M				
Single –variable Optimi				
(Newton-Raphson) Nume				
Unit III: UnConstra	ained Multi-variable			
Optimization				
	8			
lecture hours				
Unconstrained Optimizat				
Variable Functions usin Multi-variable Optimiza				
Method: Univariate N				
Pattern Search Method	iemou, mooke-jeeves			
	ptimization for			
Unit IV: Constrained O				
	ptimization for 10 lecture hours			
Unit IV: Constrained O Linear Programming	10 lecture hours			
Unit IV: Constrained Op Linear Programming Constrained Optimiz	10 lecture hours zation, Optimizing			
Unit IV: Constrained O Linear Programming	10 lecture hours zation, Optimizing vith Equality Constraint:			
Unit IV: Constrained Op Linear Programming Constrained Optimiz Multivariable Functions w	10 lecture hours zation, Optimizing vith Equality Constraint: d, Constraint Variations			
Unit IV: Constrained Op Linear Programming Constrained Optimiz Multivariable Functions w Direct Substitution Metho	10 lecture hours zation, Optimizing with Equality Constraint: d, Constraint Variations ivariable Functions with			
Unit IV: Constrained Op Linear Programming Constrained Optimiz Multivariable Functions w Direct Substitution Metho Method, Optimizing Mult	10 lecture hours zation, Optimizing with Equality Constraint: d, Constraint Variations ivariable Functions with			
Unit IV: Constrained Op Linear Programming Constrained Optimiz Multivariable Functions w Direct Substitution Metho Method, Optimizing Mult Inequality Constraint, Bra	10 lecture hours zation, Optimizing with Equality Constraint: d, Constraint Variations ivariable Functions with nch and Bound Method.			
Unit IV: Constrained Op Linear Programming Constrained Optimiz Multivariable Functions w Direct Substitution Metho Method, Optimizing Mult Inequality Constraint, Bra Unit V: Constrained	10 lecture hourszation,Optimizingzation,Optimizingvith Equality Constraint:d, Constraint Variationsd, Constraint VariationsVariable Functions withivariable Functions withnch and Bound Method.aOptimizationfor			
Unit IV: Constrained Op Linear Programming Constrained Optimiz Multivariable Functions w Direct Substitution Metho Method, Optimizing Mult Inequality Constraint, Bra Unit V: Constrained Nonlinear Programming	10 lecture hourszation,Optimizingvith Equality Constraint:d, Constraint Variationsivariable Functions withnch and Bound Method.IOptimization for			
Unit IV: Constrained Op Linear Programming Constrained Optimiz Multivariable Functions w Direct Substitution Metho Method, Optimizing Mult Inequality Constraint, Bra Unit V: Constrained	10 lecture hourszation,Optimizingvith Equality Constraint:d, Constraint Variationsivariable Functions withnch and Bound Method.IOptimization for			
Unit IV: Constrained Op Linear Programming Constrained Optimiz Multivariable Functions w Direct Substitution Method Method, Optimizing Mult Inequality Constraint, Bra Unit V: Constrained Nonlinear Programming	10 lecture hourszation,Optimizingzation,Optimizingvith Equality Constraint:d, Constraint Variationsd, Constraint VariationsVariable Functions withivariable Functions withnch and Bound Method.aOptimizationfor			
Unit IV: Constrained Op Linear Programming Constrained Optimiz Multivariable Functions w Direct Substitution Metho Method, Optimizing Mult Inequality Constraint, Bra Unit V: Constrained Nonlinear Programming	10 lecture hourszation,Optimizingvith Equality Constraint:d, Constraint Variationsivariable Functions withnch and Bound Method.IOptimization for			
Unit IV: Constrained Op Linear Programming Constrained Optimiz Multivariable Functions w Direct Substitution Metho Method, Optimizing Mult Inequality Constraint, Bra Unit V: Constrained Nonlinear Programming lecture hours	10 lecture hourszation,Optimizingvith Equality Constraint:d, Constraint Variationsd, Constraint Variationsivariable Functions withnch and Bound Method.d, Optimization forg10			
Unit IV: Constrained Op Linear Programming Constrained Optimiz Multivariable Functions w Direct Substitution Metho Method, Optimizing Mult Inequality Constraint, Bra Unit V: Constrained Nonlinear Programming lecture hours	10 lecture hourszation,Optimizingzation,Optimizingwith Equality Constraint:d, Constraint Variationsd, Constraint VariationsSivariable Functions withivariable Functions withnch and Bound Method.d, Optimizationforg10			
Unit IV: Constrained Op Linear Programming Constrained Optimiz Multivariable Functions w Direct Substitution Metho Method, Optimizing Mult Inequality Constraint, Bra Unit V: Constrained Nonlinear Programming lecture hours	10 lecture hours zation, Optimizing vith Equality Constraint: d, Constraint Variations d, Constraint Variations sivariable Functions with nch and Bound Method. hours d, Optimization for for g, 10 for h Necessary Conditions not additions, Constrained			

Programming Problems, Factors Affecting a Constrained Problem, Normalization of Constraints, Exterior Penalty Function Method, Interior Penalty Function Method, Introduction to AI in optimization.

Suggested Reading

- Raju, N.V.S. (2014) Optimization methods for Engineers, PHI Publications, ISBN-978-81-203-4744-1.
- Bhavikatti S.S. (2010), Fundamental of Optimum Design IN Engineering, New Age International Publishers, ISBN-978-81-224-2591-8
- Deb Kalyanmoy (2012) Optimization for Engineering Design, PHI Publications, ISBN-978-81-203-4678-9.
- 4. Rao S. S. (2013) Engineering Optimization Theory and Practice, ISBN: 978-81-265-4044-0

Name of The Course	Quality and Reliability Engineering				
Course Code	BTME4006				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		2	0	0	2

Course Objectives

- 1. To impart knowledge about the significance of quality and the various tools/ concepts of building quality into products.
- 2. To impart knowledge about plans for acceptance sampling and quality systems.
- 3. To address the underlying concepts, methods and application of Quality and Reliability Engineering.

Course Outcomes

CO1	Apply the tools and techniques of quality to resolve industrial engineering issues.
CO2	Estimate the obvious and hidden quality costs for a given production system.

СОЗ	Prepare and analyze various charts/ methods for quality control and improvement
CO4	Use plans for sampling and concepts of quality system management.
CO5	Model various systems applying reliability networks.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
30	20	50	100

Course Content:

Unit I:Introduction to Quality		
	8	
lecture hours		

Quality - meaning and significance, Essential components of quality, Phases or elements for building quality, Evolution of the concepts of quality, Spiral of progress of quality, Changing scope of quality activities, Ishikawa's seven quality tools, Quality Circles, Quality system economics, Hidden quality costs, Economic models of quality costs.

```
Unit II: Taguchi's Quality Loss Function
8
```

lecture hours

System approach for quality management, Juran's quality trilogy, Quality planning activities, Sporadic and chronic quality problems, Causes of variation, General quality control methodology.

Unit III: Statistical Quality Control 8 lecture hours

Control charts for variables: X bar-R, X bar-S, median, XMR charts, Control charts for attributes: p, np, c charts, Product reliability, Process capability analysis.

Unit	IV:Acceptance	Sampling
	8	lecture hours
Plans an	d tables for attributes	and variables,
Sampling	methods, Type of pl	ans, Operating
character	istic curves, Quality	improvement
methodol	ogy, Justin-time philoso	ophy.ISO 9000
Philosoph	y: Documentation, Impl	ementation and
certificati	on process	
Unit V: I	Reliability Concepts	
		8
lecture h	ours	

Reliability engineering fundamentals; Failure data analysis; Failure rate; mortality curve; Concept of burn in period; Useful life and wear out phase of a system; Mean time to failure (MTTF); Mean time between failure, (MTBF) and mean time to repair (MTTR); Reliability in terms of Hazard rate and failure density, Conditional probability and multiplication rules.

Suggested Reading

1. Dale H. Besterfield, Carol Besterfield (2018), Total Quality Management (TQM),5th Edition, Pearson Education, ISBN: 978-9353066314.

2. Juran, J.M. and Gryna, F.M, Quality Planning & Analysis, McGraw Hill (2001).

3. Grant, E.L., Statistical Quality Control, McGraw Hill (2008).

4. Feignbaum, A.V., Total Quality Control, McGraw Hill (1991).

5. Juran, J.M., Juran's Quality Control Handbook, McGraw Hill (1988).

6.E. Balagurusamy, Reliability Engineering by Tata McGraw-Hill Publishing Company Limited, 2002.

Name of The	Energy systems Laboratory				
Course					
Course Code	BTME4003				
Prerequisite					
Co-requisite	BTME4001 Energy system				
-	and Technologies				
Anti-requisite					
		L	Т	Р	С
		0	0	2	1

Course Objectives

- 1. To impart the practical knowledge about the performance characteristics of pumps and turbines.
- 2. To impart knowledge of boilers.

Course Outcomes

C01	Carryout the performance analysis of
COI	reciprocating pump.
CO2	Carryout the performance analysis of
02	centrifugal pump.
CO3	Predict the efficiency of hydraulic
COS	turbines.
CO4	Explain the working of water and fire
004	tube boilers.
CO5	Prepare a heat balance sheet by
05	conducting the morse test

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

Course Content:

LIST OF EXPERIMENTS

- 1. To study the performance characteristics of Centrifugal pump
- 2. To study the performance characteristics of reciprocating pump.
- 3. To study the performance characteristics of Pelton wheel turbine
- 4. To study the performance characteristics of Francis turbine
- 5. To study the performance characteristics Kaplan turbine.
- 6. To study construction and working of water tube boiler.
- 7. To study construction and working of fire tube boiler.
- 8. To prepare heat balance sheet.

Suggested Reading

1. NPTEL study material

(Established under Galgotias University Uttar Pradesh Act No. 14 of 2011)

Program: B.Tech.,

Automobile Engineering

Scheme: 2020-2021

Vision

To be known as a premier department in engineering by synergizing teaching, learning and research to produce competent Automobile Engineers with an exposure to interdisciplinary engineering knowledge.

Mission

MD1: Create an effective foundation in the field of production, design, thermal, industrial and automation engineering by imparting quality education.

MD2: Conduct interdisciplinary research leading to the delivery of innovative technologies through Problem and Research Based Learning.

MD3: Provide relevant industrial experience that instills the problem solving approach; integrate the product design to manufacturing life cycle management.

MD4: Prepare students for careers in academia and various industrial organization related to automobile and allied engineering.

Program Educational Objectives

PEO1: Graduates of Automobile Engineering shall be engineering professionals and innovators in core engineering, service industries or pursue higher studies.

PEO2: Graduates of Automobile Engineering shall be competent in latest technologies by exploiting automation and smart manufacturing tools to address various industry 4.0 problems.

PEO3: Graduates of Automobile Engineering shall leverage their imbibed skill through continuous working on technologies like drone and additive manufacturing knowledge to transform the society.

Program Specific Objectives

PSO1: Students are trained to perform tasks related to conversion of mechanical system to automatic system, integrating mechanical system to IoT and cloud based technologies.

PSO2: Students are practiced to use augmented reality / virtual reality along with different CAE tools for rapid prototyping and additive manufacturing.

Program Outcomes

- 1. **Engineering Knowledge** : Apply the knowledge of Mathematics, Science, and Engineering fundamentals, and an engineering specialization to solution of complex engineering problems.
- **2. Problem analysis** : Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
- 3. **Design/development of solutions** : Design of solutions for complex engineering problems and design of system components or processes that meet the specified needs with appropriate considerations of public health and safety, and cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems** : Use research based methods including design of experiments, analysis and interpretation of data and synthesis of information leading to logical conclusions.
- 5. **Modern tool usage** : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling complex engineering activities with an understanding of limitations.
- 6. The engineer and society : Apply reasoning within the contextual knowledge to access societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. Environment and sustainability : Understand the impact of the professional engineering solutions in the societal and environmental contexts, and demonstrate the knowledge of, and the need for sustainable developments.
- **8.** Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.
- 9. **Individual and team work :**Function effectively as an individual independently and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication :**Communicate effectively on complex engineering activities with the engineering community and with society at large such give and receive clear instructions.
- 11. **Project management and finance :**Demonstrate knowledge and understanding of engineering management principles and apply those to one's own work as a member and leader of a team to manage projects in multidisciplinary environments.

12. Life-long Learning :Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Curriculum

		Semester 1							
Sl.	Course Code	Name of the Course					Asses	sment Pa	attern
No			L	Т	Р	С	IA	MTE	ETE
1	BEE01T1001	Energy Sources and Audit	1	0	0	1	20	50	100
		Data Analytics (Excel and					20	50	100
2	BCS01T1001	Tableau)	1	0	0	1			
3	BCS01T1002	AI Fundamentals	2	0	0	2	20	50	100
		Multivariable Calculus and Vector		0	0	2	20	50	100
4	BBS01T1001	calculus	3	0	0	3			
5	DCC01T1002	Programming for Problem Solving	1	0	4	2	20	50	100
5	BCS01T1003	(C) Communication Skill	1 3	0	4	3	20	50	100
6 7	BLL01T1001 BBS01T1002		$\frac{3}{2}$	0	0	$\frac{3}{2}$	20	50	100 100
8		Engineering Physics	$\frac{2}{0}$		2				
8 9	BBS01P1002 BEE01T1002	Engineering Physics Lab	2	0	$\frac{2}{0}$	1 2	50 20	- 50	50 100
9 10	BEE01T1002	Bio Systems in Engineering AC DC Circuits	2	0	2	3	20	50	100
10	BEE0111003 BEE01T1001	Energy Sources and Audit	1	0	0		20	50	100
11	DEEUIIIUUI	Total	1 18	0	8	1 22	20	50	100
		Semester II	10	U	0	44			
Sl							Asses	sment Pa	attern
No	Course Code	Name of the Course	L	Т	Р	С	IA	MTE	ETE
110		Linear Algebra and Differential		-	-	Ū			
1	BBS01T1003	Equations	2	0	0	2	20	50	100
2	BEE01T1004	Embedded Technology and IoT	1	0	2	2	20	50	100
3	BCE01P1001	Waste Management	0	0	2	1	50	-	50
4	BCE01P1002	Environmental Science	0	0	1	1	50	-	50
5	BLE01P1001	Liberal and Creative Arts	0	0	1	1	50	-	50
		Creativity, Innovation and					20	50	100
6	BSB01T1001	Entrepreneurship	1	0	2	2	20	30	100
		Introduction to Python					50	_	50
7	BCS01P1004	Programming	0	0	2	1	50	-	50
8	BEE01T1005	Introduction to Digital System	2	0	2	3	20	50	100
9	BCS01T1005	Data Structure Using C	2	0	2	3	20	50	100
10	BME01P1001	Digital Fabrication	0	0	2	1	50	-	50
11	BME01P1002	Engineering Graphics	2	0	2	3	20	50	100
		Total	10	0	18	19			
a		Semester III						4 D	
Sl No	Course Code	Name of the Course	L	Т	Р	С	1	sment Pa	ETE
	BTME2001	Engineering Mechanics	L 3	I 0	P 0	<u> </u>	IA 20	MTE 50	
1	BTME2001 BTME2002	Engineering Thermodynamics	3	0	0	3	20	50	100
2							20	50	100
3	BTME2003	Manufacturing Processes I	3	0	0	3	20	50	100
4	BTME2024	Material Science (PBL)	2	0	2	3	20	50	100
5		Functions of complex variables					20	50	100
5	MATH2001	and Transforms	3	0	0	3	20	50	100
		English Proficiency and Aptitude							50
6	SLBT2021	Building – 3	0	0	4	2	50	-	50
		Manufacturing Processes I				<u> </u>			
7	BTME2004	Laboratory	0	0	2	1	50	-	50
			Ŭ	Ŭ		-	1	1	

		Mashina Duomina Lahamtam		1			1	1		
8	BTME2005	Machine Drawing Laboratory (PBL)	0	0	4	2	50	-	50	
9	BTME2022	SKILL Lab (Solid Works)	0	0	2	1	50	-	50	
10	BTME2023	Excel, PPT Training and Hobby class	0	0	2	1	50	-	50	
		Total	14	0	16	22				
		Semester IV	I		_		1			
Sl	Course Code	Name of the Course		1	1			sment Pa	1	
No			L	T	P	C	IA	MTE	ETE	
1	BTME2008	Mechanics of Material	3	0	0	3	20	50	100	
2	BTME2009	Fluid Mechanics (PBL)	2	0	2	3	20	50	100	
3		Manufacturing Processes II and	2	0	0	2	20	50	100	
4	BTME2010	Metrology	3	0	0	3	20	50	100	
4	MATH2003	Probability and Statistics Microeconomics	3		-	3	20	50	100	
5	BTME2020		3	0	0	3	20	50	100	
6	BTME2017	AI & Machine Learning using Python	0	0	4	2	50	-	50	
7		Spoken English, Empower					50	_	50	
	SLBT2002	(Cambridge university program)	0	0	4	2				
8	BTME2012	Mechanics of Material Laboratory	0	0	2	1	50	-	50	
9		Manufacturing Processes II and					50	_	50	
	BTME2013	Metrology Laboratory	0	0	2	1				
10	BTME3023	Additive Manufacturing	0	0	4	2	50	-	50	
11	BTME3022	Sensors & Transducers	1	0	0	1	20	50	100	
	Total 15 0 18 24									
Sl		Semester V					Assessment Pattern			
No	Course Code	Name of the Course	L	Т	Р	С	IA	MTE	ETE	
1	BAUT3001	Automotive Engines	3	0	0	3	20	50	100	
2	BAUT3002	Heat Engineering	3	0	0	3	20	50	100	
3	BTME3002	Kinematics of Machines	3	0	0	3	20	50	100	
4	PE01	Program Elective - 1	3	0	0	3	20	50	100	
5	PE02	Program Elective - 2	3	0	0	3	20	50	100	
6	PE03	Program Elective - 3	3	0	0	3	20	50	100	
7		English Proficiency and Aptitude					50		50	
7	SLBT3031	Building - 5	0	0	4	2	50	-	50	
8		AI & Machine Learning using					50		50	
0	BTME3017	Python	0	0	4	2	30	-	30	
9	BAUT3003	Heat Engineering Lab	0	0	2	1	50	-	50	
		Total	18	0	12	23				
		Semester VI	[·		
Sl No	Course Code	Name of the Course	L	L T P C		С	Asses: IA	sment Pa	attern ETE	
1	BTME3007	Machine Design(PBL)	4	0	0	<u> </u>	20	50	100	
		Automotive Chassis and Body	-			•				
			1	1			20	50	100	
2	BAUT3004	•	3	0	0	3	20	50	100	
		Engineering	3	0	-	-				
2 3 4	BAUT3004 BTME3008 BAUT3005	•	3 3 3	0 0 0	0 0 0	3 3 3	20 20 20	50 50 50	100 100 100	

5 PE04 Program Elective - 4 3 0 0 3 20 50 6 PE05 Program Elective - 5 3 0 0 3 20 50 7 SLBT3002 Soft Skill - 6 (Campus to Corporate) 0 0 4 2 50 - 8 BTME3010 Dynamics of Machines Laboratory 0 0 2 1 50 -	100 100 50 50			
0 1000000000000000000000000000000000000	50			
7 SLB13002 Corporate) 0 0 4 2 50 - 8 BTME3010 Dynamics of Machines Laboratory 0 0 2 1 50 -				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
8 BIME3010 Laboratory 0 0 2 1 50 -	50			
Laboratory 0 0 2 1	50			
Total 23 0 4 22				
Semester VII				
SI Course Code Name of the Course Assessment				
NO L T P C IA MTI	ETE			
1 BAUT4001 CAD/CAM 3 0 0 3 20 50	100			
2 Pollution control and Lubrication 20 50	100			
2 BAUT4006 Engineering 3 0 0 3 20 50	100			
3 Optimization Techniques and 20 50	100			
5 BTME4005 Applications 2 0 0 2 20 50	100			
4 Quality and Reliability 1 0 0 1 20 50	100			
BTME4006 Engineering 1 0 0 1	100			
5 BTME4010 Project Management 2 0 0 2 20 50	100			
6BTME4004Comprehensive Examination002150-	50			
7 BAUT4004 CAD/CAM Laboratory 1 0 0 1 20 50	100			
8 BTAUT4008 Industrial Internship 0 0 0 2 50 -	50			
9BAUT9991Capstone Project- Phase I250-	50			
Total 8 0 4 17				
Semester VIII				
SI Course Code Name of the Course Pattern	Assessment Pattern			
No course code real rate of the course L T P C IA MTI	ETE			
1BAUT9992Capstone Project- Phase II950-	50			
Total 9				

List of Electives

Elective 1

Sl	Course Code	Name of the Electives				Assessment Pattern			
No	course coue	Name of the Electives		Т	Р	С	IA	MTE	ETE
1	BAUT3055	Two And Three Wheeled Vehicles	3	0	0	3	20	50	100

Elective 2

SI					Assessment Pattern				
No	Course Code	Name of the Electives		Т	Р	С	IA	MTE	ETE
1	BAUT3051	Vehicles Dynamics	3	0	0	3	20	50	100

Elective 3

	Course Code	Name of the Electives		Assessment Pattern
--	--------------------	-----------------------	--	--------------------

SI No			L	Т	Р	С	IA	MTE	ETE
1	BAUT3054	Alternative Fuels & Energy Systems	3	0	0	3	20	50	100

Elective 4

Sl	Course Code	Name of the Electives			Assessment Pattern				
No	course coue	i tunic of the Licenves		Т	Р	С	IA	MTE	ETE
1	BAUT3058	Electric and Hybrid Vehicles	3	0	0	3	20	50	100

Elective 5

SI	Course Code	Name of the Electives			Assessment Pattern				
No	Course coue Traine of the Electives		L	Т	Р	С	IA	MTE	ETE
1	BAUT3063	Aerodynamic Design of Vehicles	3	0	0	3	20	50	100

Name of The Course	Engineering Mechanics					
Course Code	BTME2001					
Prerequisite						
Corequisite						
Antirequisite						
		L	Т	Р	С	
		3	0	0	3	

Course Objectives:

- 4. To calculate the reactive forces and analyse the structures.
- 5. To know the geometric properties of the different shapes.
- 6. To learn energy and momentum methods.

Course Outcomes

CO1	Solve the engineering problems involving
	equilibrium of paritcles and rigid bodies.
CO2	Solve the problems involving dry friction
	and virtual work.
CO3	Determine the centroid, centre of gravity
	and moment of inertia of various surfaces
	and solids.
CO4	Solve problems related to kinematics and
	kinetics of rigid body.
CO5	Solve problems using energy-momentum
	priniciple for a particle and rigid bodies
	in plane motion.
CO6	The student will be able to static force
	analysis of simple machines

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Equilibrium of Particle, Rigid body and Trusses 9 Hours

Introduction to Mechanics – Fundamental Principles – Coplanar forces – Equilibrium of particles – Free body diagram – Equilibrium of particle in space – Single equivalent force - - Equilibrium of rigid bodies in two dimensions. Analysis of plane trusses – Method of joints – Method of sections – Zero-force member.

Unit II:Friction and Virtual work 7 Hours

Characteristics of dry friction – Problems involving dry friction – Ladder – Wedges – Square threaded screws. Definition of virtual work – Principle of virtual work – System of connected rigid bodies – Degrees of freedom – Conservative forces – Potential energy – Potential energy criteria for equilibrium.

Unit III: Properties of Surfaces and Solids

6 Hours

Centroid – First moment of area – Theorems of Pappus and Guldinus – Second moment of area – Moment and Product of inertia of plane areas – Transfer Theorems – Polar moment of inertia – Principal axes – Mass moment of inertia.

Unit IV: Kinematic and Kinetics

9 Hours

Position, Velocity and Acceleration – Rectilinear motion – Curvilinear motion of a particle – Tangential and Normal components – Radial and Transverse components – Rotation of rigid bodies about a fixed axis – General plane motion – Absolute and relative motion method – Instantaneous centre of rotation in plane motion. Linear momentum – Equation of motion – Angular momentum of a particle and rigid body in plane motion – D'Alembert's principle.

Unit V: Energy and Momentum Methods 9 Hours

Principle of work and energy for a particle and a rigid body in plane motion – Conservation of energy - Principle of impulse and momentum for a particle and a rigid bodies in plane motion –

Conservation of momentum – System of rigid bodies – Impact - direct and central impact – coefficient of restitution.

Unit VI

Term Projects will be given to groups to analyze lifting machines for real life applications like material lifting cranes, mechanical screw jack etc.

Suggested Reading

1. J. V. Rao, D. H. Young, S. Timoshenko, Sukumar Pati (2013), Engineering Mechanics, Tata McGraw Hill Education. ISBN: 978-1-259-06266-7.

2. P. Ferdinand, E. Beer and J. Russell (2010), Vector Mechanics for Engineers, 9th Edition, McGraw-Hill International Edition. ISBN: 978-0-079-12637-5

3. Irving H. Shames (2012), Engineering Mechanics – Statics and Dynamics, 4th Edition, Prentice-Hall of India Private limited. ISBN: 978-8-131-72883-3

Name of The	Engineering				
Course	Thermodynamics				
Course Code	BTME2002				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

- 4. To learn the basic principles of classical thermodynamics.
- 5. To study the laws of thermodynamics to various systems and analyze the significance of the results.
- 6. To analyze the performance of thermodynamic gas and vapour power cycles.

Course Outcomes

CO1	Outline the thermodynamic properties for
	different types of system.

CO2	Apply the first law of thermodynamics for
	a system undergoing a cycle.
CO3	Demonstrate basic understanding of the
	second law of thermodynamics and its
	application to open and closed systems.
CO4	Demonstrate basic understanding of
	entropy and its application to engineering
	systems.
CO5	Practice the basic thermal analysis of
	thermodynamic cycles.
CO6	Apply thermodynamics relations to
	practical cases

Continuous Assessment Pattern

Interna Assessme (IA)		End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Basic Concepts of Thermodynamics 6 Hours

Thermodynamics and Energy, Macroscopic and microscopic viewpoint, Closed and open systems, Thermodynamic properties of a system, State and equilibrium, Processes and cycles, Forms of energy, Temperature and its measurement, Zeroth law of thermodynamics.

Unit II: First Law of Thermodynamics 9 Hours

Work transfer, pdV work, Types of work transfer, Net work done by a system, heat transfer, path function, Specific heat and latent heat, First law of thermodynamics for a closed system undergoing a cycle and change of state, Energy – a property of the system, enthalpy, specific heat at constant pressure and volume, PMM-I, Control volume, First law applied to steady flow process, Mass and energy balance.

Unit III: Second Law of Thermodynamics 9 Hours

Limitations of the first law of Thermodynamics, Kelvin-Planck statement of the second law of thermodynamics, Clausius statement, Equivalence of Kelvin- Planck and Clausius statements, Heat engine, Refrigerators, Heat Pump, COP, Carnot's theorem, Corollary of Carnot's theorem, Reversible and Irreversible process, Efficiency of Reversible Heat engine, PMM-II, Carnot cycle.

Unit IV: Entropy and properties of pure sustances 8 Hours

Introduction, Clausius theorem, Entropy – property of the system, Clausius inequality, Entropy change in irreversible process, Entropy principle, Reversible adiabatic work in steady flow system, Availability and irreversibility, Second law efficiency, p-v, p-T and T-s diagrams for a pure substance, Quality, Introduction to steam tables.

Unit V: Thermodynamic Cycles 8 Hours

Carnot cycle, Otto cycle, Diesel and Dual cycles, Brayton and reversed Brayton Cycle, Rankine cycle.

Unit VI:

Equation of State , Gibbs – Duhem relation , Maxwel relation , legendre transform , Thermodynamics potential , Clapeyron Equation

Suggested Reading

- P. K. Nag (2010), Basic and Applied Thermodynamics, Tata McGraw-Hill Publishing Company Ltd., ISBN 978-0-070-15131-4
- R. K. Rajput, A Textbook of Engineering Thermodynamics, Laxmi Publications; Fifth edition, ISBN-13: 978-8131800584
- 7. Yunus A. Cengel and Michael A. Boles, Thermodynamics, An Engineering

Approach, 8th Ed., McGraw Hill, 20015, ISBN: 978-9-339-22165-2.

 Jean-Philippe Ansermet, Sylvain D. Brechet, Principles of Thermodynamics, Ist Ed., Cambridge University Press; ISBN-13: 978-1108426091

Name of The Course	Manufactur	ing l	Proc	esses	5 I
Course Code	BTME2003				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	C
		3	0	0	3

Course Objectives:

- 4. To acquire basic knowledge about the behaviour and manufacturing properties of engineering materials and concepts of foundry and casting processes.
- 5. To acquire knowledge about various methods of welding, cold and hot working, and forming process.
- 6. To understand forging, moulding and powder metallurgy processes in detail and application of these in manufacture of a product.

Course Outcomes

CO1	Develop a simple shape of castings by		
	using different casting methods.		
CO2	Prepare the weld joints by using different		
	welding methods.		
CO3	Develop a product by using metal forming		
	processes.		
CO4	Demonstrate the powder metallurgy		
	process for making a component.		
CO5	Apply the knowledge in manufacturing a		
	product from plastic or composite		
	materials.		
CO6	Know the research scope of		
	manufacturing technology and understand		
	the new trends in the manufacturing		
	sector.		

Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)		

		Exam (ETE)	
20	30	50	100

Course Content:

Unit I: Metal Casting Processes 12 Hours

Manufacturing- selecting manufacturing process – Fundamentals of metal casting – Fluidity of molten metal – Solidification time – Sand casting – Shell mold casting - Investment casting - Plaster mold casting – Ceramic mold casting – Die casting - Centrifugal casting – Melting practice and furnaces - Defects in sand casting – Testing and inspection of casting.

Unit II: Joining Processes 10 Hours

Metal fusion welding processes – Oxyfuel gas welding – Arc welding processes – Consumable electrode: SMAW- SAW – GMAW – FCAW – Non-consumable Electrode: GTAW- AHW-PAW – EBM – LBM – Solid state welding processes: Ultrasonic welding – Friction welding – Friction stir welding -Resistance welding – Weld quality – Testing welded joints.

Unit III: Metal Forming Processes 8 Hours

Cold and Hot working: Rolling – Forging – Extrusion – Drawing – Sheet metal forming processes – High Energy Rate Forming Processes: Explosive Forming – Electro Hydraulic Forming – Electro Magnetic Forming.

UnitIV:ProcessingofMetalPowders,Ceramics and Glass5 Hours

Production of metal powders: Compaction – Sintering and Finishing – Design considerations for powder metallurgy and Process capability Shaping of ceramics – Forming and shaping of glass – Design considerations for ceramics and glass – Processing of superconductors.

Unit V: Processing of Plastics and CompositeMaterials5 Hours

Types of Plastics – Types of Molding: Injection molding – Blow molding – Compression molding – Transfer molding – Thermoforming – Reinforced plastics – Metal Matrix Composites – Ceramic Matrix Composites.

Unit VI:

To study of research framework and industrial needs modernization of conventional machines and its scope in manufacturing sector.

Suggested Reading

- 1. Manufacturing Technology Foundry, Forging and Welding (Vol-1), P.N.Rao. (2008), 3rd Edition, Tata McGraw Hill Publishing Company Ltd., New Delhi,ISBN: 978-0-070-08798-9.
- A.K. Hajra Choudhury, S.K. Hajra Choudhury and Nirjhar Roy (2009), Elements of Workshop Technology, Vol. – I, Media Promoters, ISBN: 978-8-185-09914-9.
- W.A.J.Chapman (2001), Workshop Technology, Vol 1, 5th Edition, CBS Publishers, ISBN: 978-8-123-90401-6.

Name of The	Materials Sc	ienc	e		
Course					
Course Code	BTME2024				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	P	С
		2	0	1	3

Course Objectives:

1. The main objective of this course is to provide the basic knowledge needed to

explore the discipline of materials science and engineering.

- 2. To develop the knowledge of how the structure of materials is described technically, including crystallography, microstructure, defects, and phase diagrams
- 3. To develop the knowledge of how the properties of materials are described technically and how material failure is analyzed
- 4. To introduce the concepts of structureproperty relationships
- 5. To develop knowledge in various class of materials and their applications

Course Outcomes

CO1	Explain how materials are formed and
	their classification based on atomic
	arrangement.
CO2	Draw the phase diagrams for different
	combination of metals.
CO3	Choose the heat treatment process for
	material based on the application.
CO4	Describe the mechanical behaviour of
	metallic systems and its importance.
CO5	Illustrate the different class of materials
	and their applications.
CO6	Analyze the micro-structural features of
	different materials.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Crystal	Structure
7 Hours	

Introduction to materials science – Primary and Secondary bonding in materials- Crystalline and amorphous materials –Single crystal and polycrystalline materials – Space Lattice-Module cell –Crystal systems – Bravais Lattice-Miller indices – Closed packed structures-Principal Metallic crystal structures stacking sequence and stacking faults and crystal defects- Point, Line, Planar and volume; Volume, planar and Linear density calculations-Polymorphism and allotropy.

Unit II: Phase Diagrams 8 Hours

Basics of Solidification mechanism - Cooling curve of pure metal and alloy - Phase -Phase Diagram- Gibbs's Phase rule - Interpretation of mass fractions using Lever's rule – Hume Rothery rules-Binary Iso-morphous system-Binary Eutectic alloy system (Lead-Tin System) –Binary Peritectic alloy system (Iron-Nickel System) -Invariant reactions - Iron-Iron carbide phase diagram- Slow cooling of Hypo and hyper eutectoid Temperature-Timesteels _ Transformation (TTT) and Continuous Cooling Transformation (CCT) Diagrams - Effect of alloying elements in steel – types of stainless steel and cast iron.

Unit III: Heat Treatment 7 Hours

Heat Treatment – Annealing and its types, Normalizing, Hardening tempering, Austempering and Mar-tempering – Microstructure observation – Surface Heat treatment processes – Carburizing, Nitriding, cyaniding, carbonitriding, flame and induction hardening.

Unit IV: Mechanical Properties of Materials and Testing 10 Hours

Mechanical properties of materials Strengthening mechanism -- Plastic deformation of single and poly-crystalline materials – Effect of Slip and twinning – Stress-strain curves of various ferrous and non-ferrous metals -Engineering stress strain - true stress strain relations problems - Tensile test of ductile material properties evaluation- Hardness measurement tests - Fracture of metals - Ductile and Brittle fracture; Fatigue – Endurance limit of ferrous and non-ferrous metals - Fatigue test ; Creep and stress rupture- mechanism of creep - stages of creep and creep test - SEM, XRD.

Unit V: Advanced materials and Applications 8 Hours

Composites – Fiber reinforced, Metal Matrix, Ceramic Matrix – properties and applications; Ceramics – Alumina, Zirconia, Silicon Carbide, Sialons, Reaction Bonded Silicon Nitride(RBSN), Glasses– properties and applications- Magnetic materials – Hard and soft magnets – Ferromagnetic Hysteresis – properties of magnetic materials – Intermetallic compounds-Polymers – thermosetting and thermoplastics – mechanical properties of polymers-Material selection procedure (two case studies)

Unit VI: List of Experiments

- 1. To study crystal structures of materials.
- 2. To study crystal imperfections in given specimens.
- 3. To study Bravais lattices with the help of models.
- 4. Specimen preparation and microstructural examination.
- 5. Comparative study of microstructures of given specimens (mild steel, gray C.I., brass, copper etc.)
- 6. Heat treatment experiments such as annealing, normalizing, quenching, case hardening and comparison of hardness before and after.
- 7. To study microstructure of heat-treated steel.
- 8. To study thermo-setting of plastics.
- 9. To study the creep behavior of a given specimen
- 10. To study the properties of various types of plastics

Suggested Reading

- V. Raghavan. Materials science and Engineering: A First Course 5E, ISBN 9788120324558.
- William D. Callister, David G. Rethwisch, Fundamentals of materials science and Engineering: An integrated approach 3e : An Integrated Approach 3E ISBN 0470125373 (0-470-12537-

3. William F. Smith and Javad Hashemi (2004), Foundations of materials science and Engineering 4th ed., Mc Graw Hill. Isbn: 978-0-073-52924-0

Name of The Course	Functions of complex variables and transforms				
Course Code	MATH 2001				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	C
		3	0	0	3

Course Objectives:

In modern world, Functions of complex variables and transform Calculus has become an important tool extensively used in many fields such as science, engineering, business, industry. The objective of the course is familiarizing the prospective engineers with techniques in Transform Calculus and differentiation and integration of Complex variable. It aims to equip the students with standard concepts and tools to advance level that will serve them well towards tackling more advanced level of Mathematics and application that they would find useful in their discipline.

Course Outcomes

CO1	To understand the behavior of complex
	valued functions such as
	continuity/differentiability and
	analyticity.
CO2	To evaluate complex integral,
	singularities, residue of an analytic
	function, contour integral and an integral
	over the real line.
CO3	To apply Laplace transforms for solving
	initial value problems
CO4	To applyFourier transforms for solving
	one dimensional heat and wave equations.
CO5	To apply inverse Z-transforms for solving
	difference equations.
CO6	To apply Z - transform for difference
	equations.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Complex Differentiation 12 Hours

Complex number system(A review), Limit, Continuity, Differentiability of function, Cauchy-Riemann Equations in Cartesian and Polar coordinates, Analytic function, elementary analytic functions (exponential, trigonometric, logarithm),Harmonic functions, harmonic conjugate, Conformal mappings and mobius transformations with their properties.

Unit II: Complex Integration 10 Hours

Contour integral, Cauchy theorem (without proof), Cauchy Integral formula (withoutproof), Maximum-Modulus theorem (without proof), Taylor's and Laurent's series: radius and circle of convergence, Zeroes and singularities of analytic functions, Residues, Residue theorem (without proof), Evaluation of definite integrals involving sine and cosine, and real definite integrals around unit and semi circles.

Unit III: Laplace Transform 10 Hours

Definition, existence condition, Properties, Laplace transform of Periodic, Unit step and Dirac Delta functions, Laplace transforms of derivatives and integrals, Evaluation of integrals using Laplace transforms, Convolution theorem, Inverse Laplace transform, Application of Laplace Transform in solving initial value problems.

Unit IV: Fourier Transform 7 Hours

Fourier integrals, Complex Fourier transforms, Fourier sine and cosine transforms, Properties of Fourier transforms, Convolution theorem, Fourier transforms of derivatives, Applications of Fourier transform in solving one dimensional Heat and Wave equations.

Unit V: Z Transform 6 Hours

Definition and Elementary properties of Ztransform (Unilateral, Bilateral), Inverse Z– transform.

Unit VI:

3 Hours

Convolution theorem, Solution of difference equations using Z - transform.

Suggested Reading

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, John Wiley &Sons.
- 2. J W Brown and R V Churchill, Complex Variables and Applications ,7th Ed., Mc-GrawHill,2004
- 3. Michael D. Greenberg, Advanced Engineering Mathematics, 2nd Edition, PearsonEducation
- 4. Peter V. O'Neil,Advanced Engineering Mathematics, 6th Edition, CengageLearning.
- 5. R. K. Jain and S. R. K. IyengarAdvanced Engineering Mathematics, 4th Edition, NarosaPublishers

Name of The	Artificial Intelligence and				
Course	Applications				
Course Code	BTME2021				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Τ	Р	С
		1	0	0	1

Course Objectives

1. To present a problem oriented in depth knowledge of Artificial Intelligence and Applications.

2. To address the underlying concepts, methods and application of different Artificial Intelligence and Applications

Course Outcomes

CO1	Understand the scope of AI
CO2	Explain problem solving state space
002	search
CO3	Apply knowledge representation
005	predicate logic
COA	Describe handling uncertainty and
CO4	learning
CO5	Apply for practical cases.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Scope of AI 8 Hours

Introduction to AI- application domains - natural language processing, vision and speech processing, robotics, expert systems, AI techniques- search knowledge, abstraction.

Unit II: Problem solving State space search 8 Hours

Production systems, search space control: depth first, breadth-first search, heuristic search - hill climbing, best-first search, branch and bound. Problem Reduction, Constraint Satisfaction End, Means-End Analysis.

Unit III: Knowledge Representation Predicate Logic 8 Hours

Unification, modus pones, resolution, dependency directed backtracking. Rule based Systems: forward reasoning, conflict resolution, backward reasoning, use of no backtracks. Structured Knowledge Representation: semantic net slots, exceptions and default frames, conceptual dependency, scripts.

Unit IV: Handling uncertainty and learning 8 Hours

Non-monotonic reasoning, probabilistic reasoning, use of certainty factors, fuzzy logic, Concept of learning, learning automation, genetic algorithm, learning by inductions, neural network.

Unit V: Applications using AI 8 Hours

Various Applications - Robot Classification, Robot Specification, notation Direct and Inverse Kinematics: Co-ordinates Frames, Rotations, Homogeneous Coordinates.

Suggested Reading

 S. E. Rich and K. Knight, "Artificial intelligence", MH, 2nd ed., 1992.
 N.J. Nilsson, "Principles of AI", Narosa Publ. House, 2000.
 Robin R Murphy, Introduction to AI Robotics PHI Publication, 2000
 D. W. Patterson, "Introduction to AI and Expert Systems", PHI, 1992.
 R. J. Schalkoff, "Artificial Intelligence an Engineering Approach", McGraw Hill Int. Ed., Singapore, 1992.
 George Lugar, Al-Structures and Strategies for and Strategies for Complex Problem solving, 4/e, 2002, Pearson

Name of The	Manufacturing Processes I				
Course	Laboratory				
Course Code	BTME2004				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		0	0	2	1

Course Objectives:

Education

 To learn to give initial shapes to a metal in foundry shop and to be processed further to make a product.
 To train to join metal pieces using different welding techniques.

Course Outcomes

CO1	Prepare sand mould and it further used to produce casting.
CO2	Determine the characteristics of sand permeability number and fine grainness number.
CO3	Produce simple casting components using sand mould casting technique.
CO4	Prepare a weld joint by using different welding techniques.
CO5	Illustrate the relationship between cutting parameters of cutting speed, feed rate and depth of cut on forces generated in oblique cutting.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	_	50	100

Course Content:

List of Experiments

1. Preparation of green sand mould using wooden pattern.

2. Determination of grain fineness number.

3. Determination of permeability number.

4. Determination of compressive and shear strength of moulding sand.

5. Preparation of casting using non-ferrous metals with the help of tilting furnace.

6. Preparation of butt joint using gas oxy acetylene gas welding.

7. Welding of stainless steel specimen using TIG welding.

8. Preparation of butt joint with V-groove using MIG welding.

9. To establish the relationship between cutting parameters of cutting speed, feed rate and depth of cut on forces generated in oblique cutting.10. Study and identification of various types of flames generated in oxy-acetylene gas welding.

Suggested Reading

- **5.** Manufacturing Processes I Lab manual prepared by faculties of School of Mechanical Engineering
- A.K. Hajra Choudhury, S.K. Hajra Choudhury and Nirjhar Roy (2009), Elements of Workshop Technology, Vol. – I, Media Promoters, ISBN: 978-8-185-09914-9.
- W.A.J.Chapman (2001), Workshop Technology, Vol 1, 5th Edition, CBS Publishers, ISBN: 978-8-123-90401-6.
- P.N.Rao. (2008), Manufacturing Technology – Foundry, Forging and Welding (Vol-1), 3rd Edition, McGraw Hill Publishing Company Ltd., New Delhi, ISBN: 978-0-070-08798-9.

Name of The Course	Machine Drawing Laboratory				
Course Code	BTME2005				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		0	0	2	1

Course Objectives:

1. To introduce the students to the basics and standards of engineering drawing related to machine elements.

2. To enable the students to draw sectioned views, development of surfaces and orthographic views of machine elements.

3. To train the students technical skills regarding part drawings, production and assembly drawings.

Course Outcomes

CO1 Draw and interpret sectioned solids and development of surfaces.

SCSORLDST MECHANICALENGENEERING

CO2	Explain various standards and			
	specifications related to standard machine			
	components.			
CO3	Apply the knowledge of fits and			
	tolerances for various applications.			
CO4	Draw orthographic views of machine			
	elements.			
CO5	Select, configure and synthesize			
	mechanical components into assemblies.			

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

Course Content:

Unit I: Sectioning of Solids and Development			
of Surfaces	6 Hours		

Selection of Views-Parts not usually sectioned-Development of Surfaces and application in sheet metal industry.

Unit II: Machine Drawing Conventions 4 Hours

Need for drawing conventions- introduction to BIS conventions-Reference to hand book for the selection of standards-Conventional representation of material, common machine elements and parts -Methods and general rules of dimensioning of holes, centers, curved and tapered features.

Unit III: Limits, Fits and Tolerances 4 Hours

Limits, Fits and tolerances – Allocation of fits for

various mating parts – Tolerance data sheet – Tolerance table preparation –Geometric tolerance.

Unit IV: Drawing of Machine Elements 10 Hours

Drawing of the following machine elements: threaded fasteners and joints, keys, cotters and pin

joints, welded and riveted joints, pipe joints, shaft coupling and pulleys, journals and bearings.

Unit V: Assembly Drawings 4 Hours

Drawings of assembled views for the part drawings of the Engine parts and and other machine parts- Screw jack, Machine Vice, single tool post. Valves: Steam stop valve, feed check valve.

Suggested Reading

- N.D. Bhatt (2011), Machine Drawing, Published by R.C.Patel, 46th Edition, Charotar PublishingHouse Book Stall, ISBN: 978-9-380-35846-8.
- K C John (2009), Engineering Graphics for Degree, Prentice Hall of India. ISBN: 978-8-120-33788-3.
- Warren Luzadder and Jon M. Duff (2009), Fundamentals of Engineering Drawing with an Introduction to Interactive Computer Graphics for Design and Production, 11th Edition, PHI Learning, ISBN: 978-8-120-30885-5.
- 10. P.S. Gill (2012), Machine Drawing, S. K. Kataria& Sons, ISBN: 978-8-185-74979-2.
- 11. Ajeet Singh (2012), Machine Drawing (with AutoCAD), 2nd Edition, Tata Mcgraw Hill Education, ISBN: 978-0-071-07294-6.
- Barclay James and Griffiths Brian (2002), Engineering Drawing for Manufature, Butterworth-Heinemann, ISBN: 978-1-857-18033-6.

Name of The Course	Skill (Solid V	Vorl	ks)		
Course Code	BTME2022				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		0	0	2	1

Course Objectives:

- To enable students to use a modern CAD software package for solid modeling.
- To draw 3D views of various machine elements.
- To apply the knowledge of software package to model any chosen prototype.

Course Outcomes

C01	Use SolidWorks software package for		
	solid modeling.		
CO2	Draw solid models of various machine		
02	Draw solid models of various machine elements in SolidWorks.		
CO3	Apply the knowledge of SolidWorks to		
	model any chosen prototype.		

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

Course Content:

	Unit	Unit Topics
Week 1(2Hours)	1.Introductio n to SOLIDWOR KS	 Introduction to SOLIDWORKS 2016 Getting Started with SOLIDWORKS Menu Bar and SOLIDWORKS Menus Command Manager Toolbar Dimensioning Standard and Units Important Terms and Their Definitions Hot Keys Color Scheme

Week 1 (2Hours)	Solid Models	 Starting a New Session of SOLIDWORKS 2016 Task Panes Starting a New Document in SOLIDWORKS 2016 Understanding the Sketching Environment Setting the Document Options Learning Sketcher Terms Drawing Sketch Entities Drawing Display Tools Deleting Sketched Entities
Week2(2Hours)	3. Editing and Modifying Sketches	 Editing Sketched Entities Creating Patterns Editing Patterns Writing Text in the Sketching Environment Modifying Sketched Entities
Week2(2Hours)	4. Adding Relations and Dimensions to Sketches	 Applying Geometric Relations to Sketches Design Intent Dimension a Sketch Concept of a Fully Defined Sketch Deleting Overdefined Dimensions Opening an Existing File

r		1
Week3(2Hours)	5. Advanced Dimensionin g Techniques and Base Feature Options	 Advanced Dimensioning Techniques Measuring Distances and Viewing Section Properties Creating Base Features by Extruding Sketches Creating Base Features by Revolving Sketches Determining the Mass Properties of Parts Dynamically Rotating the View of a Model Modifying the View Orientation Restoring the Previous View Displaying the Drawing Area in Viewports Display Modes of a Model Additional Display Modes Assigning Materials and Textures to Models
Week3(2Hours)	6. Creating Reference Geometries	 Importance of Sketching Planes Reference Geometry Advanced Boss/Base Options Modeling Using the Contour Selection Method Creating Cut Features Concept of Feature Scope
Week 4 (2Hours)	7. Advanced Modeling Tools-I	 Creating Simple Holes Creating Standard Holes Using the Hole Wizard Adding External Cosmetic Threads Creating Fillets Selection Options Creating Fillets Using the FilletXpert Creating Chamfers Creating Shell Features Creating Wrap Features

Mo	Advanced deling bls-II	 Creating Mirror Features Creating Linear Pattern Features Creating Circular Pattern Features Creating Sketch Driven Patterns Creating Curve Driven Patterns
Week 5 (2Hours)		 Creating Table Driven Patterns. Creating Fill Patterns Creating Variable Patterns Creating Rib Features Displaying the Section View of a Model Changing the Display States

	9. Editing Features	 Editing Using the Edit Feature Tool Editing Sketches of the Sketch-based Features Editing the Sketch Plane Using the Edit Sketch Plane 	Week 7 (2Hours)	11. Advanced Modeling Tools-IV	 Advanced Modeling Tools Creating Fastening Features Creating Freeform Features Dimensioning a Part Using DimXpert
		 • Editing Using the Instant3D Tool • Editing Features and Sketches byUsing the Cut, Copy, and 	Week 7	3D Modelling Project	• Use the concept of Reverse Engineering and Redesign the parts by measuring them using the Measuring Instrument
Hours)		 Paste Options Cutting, Copying, and Pasting Features and Sketches fromOne Document to the Other Copying Features Using Drag 	Week 8	3D Modelling Project	• Use the concept of Reverse Engineering and Redesign the parts by measuring them using the Measuring Instrument
Week 5 (2Hours)		 and Drop Deleting Features Deleting Bodies Suppressing Features Unsuppressing the Suppressed Features Unsuppressing Features with Dependents Hiding Bodies Moving and Copying Bodies Reordering the Features Rolling Back the Feature Renaming Features 	Week 8 (2Hours)	12. Assembly Modeling-I	 Assembly Modeling Creating Bottom-up Assemblies Creating Top-down Assemblies Moving Individual Components Rotating Individual Components Moving and Rotating Individual Components Using the Triad Assembly Visualization
		 Creating Folders in the FeatureManager Design Tree What's Wrong Functionality 	ours)	13. Assembly Modeling-II	 Advanced Assembly Mates Mechanical Mates Creating Sub-assemblies Deleting Components and
Week 6 (2Hours)	10. Advanced Modeling Tools-III	 Creating Sweep Features Creating Cut-Sweep Features Creating Loft Features Adding a Section to a Loft Feature Creating Lofted Cuts 	Week 9 (2Hours)		Sub-assemblies • Editing Assembly Mates • Editing Components • Editing Sub-assemblies • Dissolving Sub-assemblies • Replacing Components
Week 6 (2Hours)		 Creating 3D Sketches Creating Grid Systems Editing 3D Sketches Creating Curves Extruding a 3D Sketch Creating Draft Features 			

• Creating Dattarns of	7	
 Creating Patterns of Components in an Assembly Copying and Mirroring Components Copying a Component along with Mates Simplifying Assemblies using the Visibility Options Checking Interferences in an Assembly Checking the Hole Alignment Creating Assemblies for Mechanism 	Modeling (Surface (Su	
 Creating the Exploded State of an Assembly The Drawing Mode Starting a Drawing Document Types of Views Generating Standard Drawing Views Generating Derived Views Working with Interactive Drafting in SOLIDWORKS Editing and Modifying Drawing Views Modifying the Hatch Pattern in Section Views 	Week 11 (2Hours)	 Surfaces ,Filleting Surfaces Creating a Mid-Surface, Deleting Holes from Surfaces Replacing Faces, Deleting Faces Moving and Copying Surfaces Mirroring Surface Bodies Adding Thickness to Surface Bodies Creating a Thicken Surface Cut, Creating a Surface Cut Use the concept of Reverse
 Adding Annotations to Drawing Views Adding the Bill of Materials (BOM) to a Drawing Linking Bill of Materials Adding Balloons to the Drawing Views Adding Balloons Using the AutoBalloon Tool Creating Magnetic Lines Adding New Sheets to the Drawing Views Editing the Sheet Format Creating User-Defined Sheet Formats 	3. 1. Matt Lomb 2013, ISBN: 9 4. Greg Jank	 Engineering and Redesign the parts by measuring them using the Measuring Instrument Creating Assemblies of parts created earlier Drafting of the assembly model created Student needs to demonstrate his project
_	 Assembly Copying and Mirroring Components Copying a Component along with Mates Simplifying Assemblies using the Visibility Options Checking Interferences in an Assembly Checking the Hole Alignment Creating Assemblies for Mechanism Creating the Exploded State of an Assembly The Drawing Mode Starting a Drawing Document Types of Views Generating Derived Views Working with Interactive Drafting in SOLIDWORKS Editing and Modifying Drawing Views Modifying the Hatch Pattern in Section Views Adding Annotations to Drawing Views Adding the Bill of Materials (BOM) to a Drawing Linking Bill of Materials Adding Balloons to the Drawing Views Adding Balloons Using the AutoBalloon Tool Creating Mesets to the Drawing Views Editing and Sheet Format Creating User-Defined Sheet 	Components in an Assembly Copying and Mirroring Components Copying a Component along with Mates Simplifying Assemblies using the Visibility Options Checking Interferences in an Assembly Checking the Hole Alignment Creating the Exploded State of an Assembly Checkanism Creating the Exploded State of an Assembly The Drawing Mode Starting a Drawing Document Types of Views Generating Standard Drawing Views Generating Derived Views Working with Interactive Drafting in SOLIDWORKS Editing and Modifying Drawing Views Adding Annotations to Drawing Views Adding the Bill of Materials (BOM) to a Drawing Linking Bill of Materials Adding Balloons Using the AutoBalloon Tool Creating Magnetic Lines Adding New Sheets to the Drawing Views Editing the Sheet Format Creating User-Defined Sheet Formats Creating User-Defined Sheet Formats Creating User-Defined Sheet Formats Creating User-Defined Sheet Formats

SCSOOL DF MECHANICALEFNERING

69

2011 ISBN: 978-1-118-05147-4

Name of The Course	Mechanics of Materials					
Course Code	BTME2008					
Prerequisite	BTME2001-Engineering Mechanics					
Co-requisite						
Anti-requisite						
	L T P C					
		3	0	0	3	

Course Objectives

- 1. To develop the relationship between the loads applied to a non-rigid body, the internal stresses and deformations induced in the body.
- 2. To study the general state of stresses and strains in a given loaded member and the magnitude and direction of the principal stresses
- 3. To understand the different approaches to calculate slope and deflection for various types of beams.
- 4. To analyze the columns with different edge conditions by using different theories.

Course Outcomes

CO1	Understand the basics of simple stress
COI	and strain
CO2	Draw Mohr's circle and solve problems
002	involving biaxial state of stress.
CO3	Apply theory of simple bending for
005	analysing problems.
CO4	Calculate deflection of various beams of
04	different shapes.
CO5	Calculate torsion in shafts and buckling
105	load of column.
CO6	Able to model the system and find out
	deflection

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Stresses and Strains 8 Hours

Definition/derivation of normal stress, shear stress, and normal strain and shear strain – Stressstrain diagram- Elastic constants – Poisson's ratio – relationship between elastic constants and Poisson's ratio – Generalized Hook's law – Strain energy – Deformation of simple and compound bars – thermal stresses.

Unit	II:	Bi-axial	Stress	system
8 Hours				

Biaxial state of stress – Stress at a point – stresses on inclined planes – Principal stresses and Principal strains and Mohr's circle of stress, Theories of failure

Thin cylinders and shells – deformation of thin cylinders and shells; Thick Cylinders, Shrink fits, Compounding. Fundamentals of theory of elasticity.

Unit III: Simple Bending 8 Hours

Types of beams: Cantilever, Simply supported, Overhanging: Shear Force and Bending Moment Diagrams. Theory of simple bending – bending stress and shear stress in beams.

Unit IV: Deflection of Beams 8 Hours

Deflection of beams by Double integration method – Macaulay's method – Area moment theorems for computation of slopes and deflections in beams – Conjugate beam method.

Unit V: Torsion and columns 8 Hours

Introduction to Torsion – derivation of shear strain – Torsion formula – stresses and deformations in circular and hollow shafts – Stepped shafts – shafts fixed at the both ends Theory of columns – Long column and short

School of Mechanical Engineering

column - Euler's formula – Rankine's formula - Secant formula - beam column.

Unit VI:

Modeling of the system and find out deflection at various points

Suggested Reading

1. S. S. Rattan (2011) Strength of material Tata McGraw Hill Education. ISBN: 978-0-071-07256-4.

2. S.P. Timoshenko and D.H. Young (2011), Strength of Materials, 5th edition, East West Press Ltd, ISBN: 978-8-176-71019-0.

3. R.K. Bansal (2010), Strength of Materials, 5th Edition, Laxmi Publications, ISBN: 978-8-131-80814-6.

Name of The Course	Fluid Mech	anics			
Course Code	BTME2009)			
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		2	0	2	3

Course Objectives

1.Understand fluid behaviour for engineering design and control of fluid systems.

2. Develop competence with mass, energy and momentum balances.

3. Study the development of boundary layers.

Course Outcomes

	-		
C01	Explain the properties of fluid and its		
COI	kinematics.		
	Categorize the types of flow and		
CO2	applications of governing equations in a		
	fluid flow system.		
	Examine the losses of fluid flow through		
CO3	pipes and study about pipe network		
	design.		
004	Calculate the dependent and independent		
CO4	parameters of fluid flow.		
005	Examine the boundary layer and no-slip		
CO5	boundary condition in the fluid flow.		

CO6	Apply the basic laws of fluid mechanics in
	flow measurement.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Fluid Properties and Hydrostatics 6 Hours

Density, Viscosity, Surface tension, compressibility, capillarity, Hydrostatic forces on plane, inclined and curved surfaces, buoyancy, centre of buoyancy, metacentre.

Unit II: Fluid Dynamics 6 Hours

Control volume, Fluid Kinematics, Types of flows; Steady flow, Unsteady flow, Uniform and Non Uniform flow, Rotational flow, Irrotational flow, 1-D, 2-D, 3-D flows– Streamline and Velocity potential lines, Euler and Bernoulli's equations and their applications, moment of momentum, Momentum and Energy correction factors, Impulse, Momentum equation- Navier-Stokes Equations, Applications.

Unit III: Open & Closed Channel Flow 12 Hours

Open Channels Flow, Laminar & turbulent flow through pipes, Darcy's law, Minor losses, Multi reservoir problems, Moody's diagram, Hagen Poiseuille equation, Turbulent flow, Specific Energy, Critical flow concept, Hydraulic jump, uniform flow and gradually varying flow concepts, Pipe network design, Measurement of pressure and flow, Measurement of pipe flow, velocity through pipes and open channels.

Unit IV: Dimensional Analysis 10 Hours

Dimensional homogeneity, Raleigh and Buckingham π theorems, Non-dimensional numbers, Model laws and distorted models, Module quantities, Specific quantities

Unit V: Boundary layers 6 Hours

Boundary layers, Laminar flow and Turbulent flow, Boundary layer thickness, momentum-Integral equation, Drag and lift, Separation of boundary layer, Methods of separation of boundary layer.

Unit VI:

1. Conducting experiments to verify Bernoulli's theorem.

2. Determination of the Coefficient of discharge and coefficient of velocity for the given Orifice meter.

3. Determination of the Coefficient of discharge of given Venturi-meter.

4. Determination of the Coefficient of discharge of given Rectangular notch.

5. Determination of the Coefficient of discharge of given 'V' notch.

6. Comparative study of head loss in pipes connected series and parallel.

7. Study of fluid flow types using Reynolds apparatus.

8. Determination of drag force at different incidence angle in wind tunnel.

9. Determination of metacentric height.

10. Determination of the Reynolds no. in fluid flows.

Suggested Reading

- R. K. Bansal (2010), A Textbook of Fluid Mechanics and Hydraulic Machines, 9thEdition, Laxmi Publication (P) Ltd., New Delhi. ISBN-978-8-131-80815-3
- 2. <u>G.K. Batchelor</u>, An Introduction to Fluid Dynamics, Cambridge

Mathematical Library, ISBN: 9780521663960

- 3. Yunus A. Çengel (2010), Fluid Mechanics, Tata McGraw Hill, ISBN: 978-0-070-70034-5.
- 4. Frank M. White (2011), Fluid Mechanics, 7th edition, Tata McGraw-Hill Education, ISBN- 978-0-071-33312-2.

Name of The	Manufacturing Processes II					
Course	and Metrology					
Course Code	BTME2010					
Prerequisite	BTME2003- Manufacturing					
	Processes I					
Co-requisite						
Anti-requisite	isite					
		L	Т	Р	С	
		3	0	0	3	

Course Objectives

1. To get acquainted with the theory of metal cutting, mechanism of machining and the parameters that influences the machining processes.

2. To get basic idea about different conventional and non conventional machining processes.

3. To gain knowledge of various instruments for linear measurement, angular measurement and surface finish etc

Course Outcomes

CO1	Explain the mechanism of chip formation		
COI	in machining.		
	Describe the various machining		
CO2	processes such as turning, drilling,		
02	boring, shaping, slotting, milling and		
	grinding.		
CO3	Illustrate the principle of gear generation		
COS	process.		
CO4	Illustrate the working principle of Non-		
004	traditional machining processes.		
CO5	Explain the principle of different		
005	metrology instruments.		
COL	Able to explain the working of CNC		
CO6	machines and micromachining.		

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Theory of Metal Cutting 10 Hours

Mechanism of chip formation – Tool Specification System- Tool signature for single point & Multi-point cutting Tools- Orthogonal and Oblique cutting – Single Point and Multipoint Cutting Tools-Machining forces - Merchant's Circle Diagram - Thermal aspects of metal machining - Cutting fluids - Machinability -Cutting tool materials - Tool wear and Tool life calculations.

Unit II: Lathe and Basic Machine Tools 08 Hours

Lathe - Types - Operating Parameters - lathe operations – Tool nomenclature - Work holding devices. Shaping - Planing - Slotting – Drilling -Boring – Reaming – Tapping – Broaching.

Unit III: Milling, Grinding Machines and Gear Generation 08 Hours

Milling machines - Cutters - Milling operations -Indexing. Grinding – Types of grinding machines - Grinding wheel designation and selection - Bond and Bonding processes.

Gear generating principles - Gear Hobber - Gear finishing methods - Bevel gear generator

Unit IV: Non-traditional Machining Processes 07 Hours

Classification of Nontraditional Machining process – Principle of AJM, WJM, USM, EDM, ECM, LBM - Process characteristics – Applications

Unit V: Metrology and Instrumentation 07 Hours Measurement standards - Linear, angular and form measuring instruments – Comparators – Gauge blocks – Gauges - Optical instruments – Profilometer – Coordinate measuring machine

Unit VI:

CNC machining: Machining on CNC lathe, drilling and milling machines, Micromaching: Abrasive jet micromachining (AJMM), Abrasive water jet micromachining (AWJMM), Water jet micromachining (WJMM), Ultrasonic micromachining (USMM).

Suggested Reading

- P.C. Sharma, (2008), Text book of Production Technology, 7th Edition, S. Chand & Company Ltd, New Delhi, ISBN: 978-8-121-91114-6.
- 2. O.P. Khanna & M. Lal (2010), A Text book of Production Technology, Dhanpat Rai Publications, New Delhi, ISBN: 978-8-189-92832-2.
- S. KapakjianandS.R.Schmid (2005), Manufacturing Engineering and Technology, 4thEdition, Pearson Education (Singapore) Pvt. Ltd. ISBN: 978-8-177-58170-6.

Name of The Course	Probability and Statistics				
Course Code	MATH2003				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Τ	Р	С
		3	0	0	3

Course Objectives

The aim of this course is to introduce students to the basic concepts of probability distributions and their applications. The course also serves as a foundation to analyze problems in Science and Engineering applications through statistical testing methods.

Course Outcomes

-				
Define the basic concepts of Probability				
theory and Random variables.				
Identify the type of distribution and				
Apply it in problem solving.				
Apply the concept of correlation and				
Regression.				
Explain the concepts of sampling				
distributions and estimation theory and				
apply it to estimate the confidence				
intervals.				
Apply statistical tests to solve the				
hypothesis testing problems.				
Apply statistical tests to solve Large and				
Small samples.				

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Variables and probability Distributions 12 Hours Review of Probability, Probability density function, Cumulative distribution function, Expectation and Variance. Binomial, Poisson and Geometric distributions, Probability density function, Cumulative distribution function, Expectation and Variance, Uniform, Normal, Exponential distributions, Joint distribution and joint density functions, Conditional distribution.

Unit II: Correlation and Regression 8 Hours

Curve fitting by method of least squares, Fitting of straight lines, Polynomials, Exponential curves, Correlation, Rank correlation, Regression analysis, Linear and non-linear regression, Multiple regression.

Unit III:Sampling Theory 5 Hours

Population and sample, Statistical inference, Sampling with and without replacement, Random samples, Population parameters, Sample statistics, Sampling distributions, Sample mean, Sampling distribution of means, Sample variances, Sampling distribution of variances, Case where population variances is unknown,

Unit IV: Estimation Theory 5 Hours

Estimators, Point and Interval Estimation, Confidence Interval estimates of population parameters, Confidence intervals for variance of a Normal distribution, Maximum likelihood estimates.

Unit IV: Tests of Hypothesis and Significance 7 Hours

Statistical hypothesis, Null and Alternate hypothesis, test of hypothesis and significance, Type I and Type II errors, Level of Significance, Tests involving the Normal distribution, One-Tailed and Two-Tailed tests, P value,

Unit VI:	3 Hours

Review Special tests of significance for Large and Small samples (F, chi- square, z, t- test), one way ANOVA.

Suggested Reading

- R. E. Walpole, R. H. Mayers, S. L. Mayers and K. Ye (2007), Probability and Statistics for Engineers and Scientists, 9th Edition, Pearson Education, ISBN:978-0-321-62911-1.
- Sheldon M. Ross (2011), Introduction to Probability and Statistics for Engineers and Scientists, 4th Edition, Academic Foundation, ISBN:978-8-190-93568-5.
- Douglas C. Montgomery (2012), Applied Statistics and Probability for Engineers, 5th Edition, Wiley India, ISBN: 978-8-126-53719-8.
- 4. M. R. Spiegel, J. Schiller and R. A.

Srinivasan(2010), Probability & Statistics, 3rd Edition, Tata- McGraw Hill, ISBN:978-0-070-15154-3.

Name of The Course	Mechanics of Materials Laboratory				
Course Code		BTME2012			
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	P	С
		0	0	2	1

Course Objectives

To supplement the theoretical knowledge gained in Strength of Materials with practical testing under applied loads. This would enable the student to have a clear understanding of the design for strength and stiffness.

Course Outcomes

CO1	Conduct tension and compression tests on standard specimens.		
CO2	Calculate impact strength of standard specimen.		
CO3	Determine spring constant of closed and open coil helical spring.		
CO4	Calculate the fatigue strength of given specimens.		
CO5	Calculate hardness of specimens, and determine the young's modulus of material by deflection test.		

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

Course Content:

COURSE CONTENT

1. To determine Brinell Hardness Number (BHN) for the given material of the specimen.

- 2. To determine Rockwell Hardness Number (RHN) for the given material of the specimen.
- 3. To determine the stiffness and modulus of rigidity of open coil helical spring.
- 4. To determine the stiffness and modulus of rigidity of closed coil helical spring.
- 5. To determine the impact strength for the given specimen using Charpy test.
- 6. To determine the impact strength for the given specimen using Izod test.
- 7. To determine the Young's modulus of the g material by conducting the deflection test.
- 8. To study the fatigue strength for the given specimen using Fatigue test.
- 9. To determine the Young's modulus by conducting tension test on a given mild steel specimen.
- 10. To determine the Maximum compressive strength by conducting compression test on a given specimen on UTM.
- 11. To study the strain aging behavior of steel (associated with the yield-point phenomena) using load-elongation curve obtained from tensile test.

Suggested Reading

- **1.** S. S. Rattan (2011), Strength of Material, Tata McGraw Hill Education.
- S.P. Timoshenko and D.H. Young (2011), Strength of Materials, 5th edition, East West Press Ltd.
- 3. R.K. Bansal (2010), Strength of Materials, 5th Edition, Laxmi Publications.

Name of The Course	Manufacturing Processes II and Metrology Laboratory				
Course Code	BTME2013				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Τ	Р	C
	0 0 2 1				

Course Objectives

4. To learn and identify parts of a Lathe Machine and different operations on a Lathe.

- 5. To become skilled to handle and use drilling, lathe, milling and surface grinding machines.
- 6. To gain hands on practices in measurements and measuring instruments

Course Outcomes

CO1	Develop a component using basic operations of lathe and drilling machine.
CO2	Produce a component using milling and shaper machine.
CO3	Create a single point cutting tool with various angles using tool and cutter grinder
CO4	Measure the different measurements using measuring instruments and analyse the errors.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

Course Content:

COURSE CONTENT

1.Lathe Exercise – Facing, Straight turning, knurling, chamfering, Thread cutting operations using Lathe Machine

2. Drilling - Countersinking and Tapping using Drilling Machine.

3. End milling and Gear cutting using Milling Machine.

4. Surface finishing using Surface Grinding Machine.

5. Grinding of single point cutting tool using Tool and Cutter Grinder.

6. Machining a block on shaper machine.

7. Study & working of simple measuring instruments like Vernier calipers and micrometer.

8. Measurement of effective diameter of a screw thread.

9. Measurement of angle using sine bar & slip gauges.

10. Study & angular measurement using bevel protector.

11. Measurement of various angles of SPCT (Single Point Cutting Tool-HSS) using Tool maker's Microscope.

12. Measurement of various dimensions of spur gear using Optical Profile Projector.

Suggested Reading

7. Manufacturing Processes II and Metrology Lab manual prepared by faculties of School of Mechanical Engineering.

- 8. Manufacturing Practices Lab Manual, SOME, Galgotias University, Dr. P. Tamilchelvan, 2016.
- 9. Metrology Lab Manual, SOME, Galgotias University, Dr. P. Tamilchelvan, 2016.
- A.K. Hajra Choudhury, S.K. Hajra Choudhury and Nirjhar Roy (2010), Elements of Workshop Technology, Vol. – II, Media Promoters, ISBN: 978-8-185-09915-6.
- Manufacturing Engineering and Technology, S. Kapakjian and S.R. Schmid, 4th Edition, Pearson Education (Singapore) Pvt. Ltd. (2005) ISBN: 978-8-177-58170-6.

Name of The Course	Additive Manufacturing Laboratory				
Course Code	BTME3023				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		0	0	4	2

Course Objectives

- 1. To augment the theoretical knowldege of design to print the physical 3D mechanical components and prosthetics.
- 2. To get the hands on skill of designing to printing any mechanical or bomedical product.

Course Outcomes

C01	Understand the concept of Parametric		
COI	design.		
CO2	Develop a solid model using Tinker CAD		
02	and Fusion 360 software.		
CO3	Print different Mechanical Component		
CO4	Print Biomedical based prothetics		

CO5 Understand and design the basic working 3D printer

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

Course Content:

COURSE CONTENT

- 1. To Learn and make simple parametric design on TinkerCAD software.
- 2. To Learn and make simple parametric design on AutoDesk Fusion 360 software.
- 3. To study different types of 3D printer in the lab, make sketch of the printer.
- 4. To Learn the circuit and microcontroller of the common FDM based 3D printer available in the lab.
- 5. To design and print the fuel injector of the IC engine.
- 6. To design and print the fuel injector of the IC engine.
- 7. To design and print the dental implant and crown.
- 8. To design and print the hearing aid.
- 9. To make Arduino or Raspberry based simple prototype of 3D printer.
- 10. To learn the programming of G-Code.

Suggested Reading

- Chee Kai Chua, Kah Fai Leong(2016), 3D Printing And Additive Manufacturing: Principles And Applications, WSPC
- Ben Redwood, FilemonSchöffer& Brian Garret(2017), The 3D Printing Handbook:Technologies, design and applications, 3D Hubs B.V

3. Hod Lipson,

M.Kurman(2013)Fabricated:The New World of 3D Printing, Wiley.

Name of The Course	Automotive	Automotive Engines				
Course Code	BAUT3001	BAUT3001				
Prerequisite						
Co-requisite						
Anti-requisite						
		L	Т	Р	С	
		3	0	0	3	

Course Objectives

- 1. To study the working of engines
- 2. To study Engine parts and their functions
- 3. To study the Different Engine technologies

Course Outcomes

CO1	Understand the Construction and					
COI	operation of IC Engine					
CO2	Perform a thermodynamic analysis of					
002	Otto, Diesel, andDual cycle models					
	Demonstrate knowledge of the					
CO3	characteristics of common liquid and					
	gaseous fuels					
CO4	Demonstrate an understanding the role of					
004	lubrication in reducing friction and wear					
	Demonstrate an understanding of					
CO5	technological, environmental, and social					
	impacts of alternative fuels					
CO6	Demonstrate an understanding MPFI and					
000	CRDI engines					

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Introduction 8 Hours

Classification of Automobiles, type of automobile engines, Constructional details and working

SCSORLDS MECHANICALENGENEERING

principles of spark ignition (SI) and compression ignition (CI) engines, Two stroke SI and CI engines – construction and working, Comparison of SI and CI engines and fourstroke and two stroke engines, Engine classification, firing order, Otto, diesel and dual cycles, fuels for modern automobile engines like LPG, CNG, bio-diesel, national and international pollution norms.

Unit II: Engine parts and their functions 8 Hours

Types of cylinder head, piston, special features in pistons, piston rings, types of piston rings, piston pin, connecting rod, special features of connecting rods, crank shaft, flywheel, cam and follower, camshaft, valve and valve mechanism, crank case

Unit III: Fuel Supply Systems

Hours

8

8

Fuel system in petrol engine, carburetion principle and carburetors, petrol injection system, MPFI fuel system, diesel engine- diesel fuel pump principle, types of fuel pumps, types of fuel injector nozzles, simple and multiple unit pumps, C. A. V. Bosch pump, types of fuel systems for diesel engines, modern distributers; Air cleaners

Unit IV: Cooling and Safety

8 Hours

Cooling system in Automobiles; air and water cooled engines; Lubricants system; lubrication Vehicle safety, safety features in modern automobiles like air bags, anti-lock braking system, crumple zones, introduction to power steering and power brakes

Unit V: Engine Types

Hours

Single Fuel & Multi Fuel Engine: Combustion in dual fuel engines, factors affecting combustion in duel fuel engines performance of dual fuel engines, advantages of dual fuel engines; multifuel engines, characteristics of Multi fuel engines, modification of fuel system, performance of multi-fuel engines, brief introduction to working of stratified charged engine, Sterling engine, Wankel engine, variable compression engine, Air cleaners &Silencers.

Unit VI:

MPFI engine, CRDI engine, performance parameter analysis

Suggested Reading

- 1. William.H.Crouse (2006), Automotive Mechanics, 10th Edition, McGraw-Hill, ISBN: 978-0-07-063435-0.
- 2. Kirpal Singh (2011), Automobile Engineering, 12th edition, Standard Publications, ISBN: 978-8-180-14177-5
- Bosch Automotive Hand Book (2007), 8th Edition, SAE Publications, ISBN:978- 0-7680-4851-3.
- K. Newton and W. Steeds (2001), the motor vehicle, 13th Edition, Butterworth-Heinemann Publishing Ltd, ISBN: 978-0-080-53701-6.

Name of The Course	Kinematics of Machines					
Course Code	BTME3002	BTME3002				
Prerequisite	BTME2001	BTME2001 Engineering Mechanics				
Co-requisite						
Anti-requisite						
		L	Τ	Р	С	
		3	0	0	3	

Course Objectives

- 1. To familiarize students with basic types of mechanisms, joints and degrees of freedom to perform position, velocity and acceleration analysis using graphical and analytical methods.
- 2. To provide students an understanding of different types of mechanisms.
- 3. To teach the basics of synthesis of simple mechanisms.
- 4. To teach students the kinematic analysis of cam-follower motion and gear train configurations.

SCSORLDS MECHANICALENGINEERING

Course Outcomes

GO1	Understand the concepts of various				
CO1	mechanisms and pairs.				
	Analyze the displacement, velocity and				
CO2	acceleration of different links in a simple				
	mechanism.				
CO3	Synthesize simple mechanisms based on				
COS	the given input conditions.				
CO4	Draw the profile of cam for different types				
004	of follower motions.				
CO5	Apply kinematics principle to gears				
05	operation.				
CO6	Model and analysis of mechanism				

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Basics of Mechanisms

8 Hours

Introduction to mechanisms and its terminologies - Degree of freedom – Mobility - Kutzbach criterion - Grubler's criterion for planar mechanisms - Grashoff's law - Kinematic InVersion 2.2s of 4-bar chain - Single slider and double slider crank chains - Quick return mechanism - Limiting positions - Mechanical advantage - Transmission angle - Ratchets and escapements – Indexing Mechanisms – Rocking Mechanisms – Straight line generators.

Unit II: Kinematic Analysis of SimpleMechanisms8 Hours

Displacement, velocity and acceleration analysis in simple mechanisms having turning, sliding and rolling pair - Coriolis acceleration using graphical relative motion method - Instantaneous center method - Four bar and slider crank mechanisms -Analytical method for four bar and slider crank mechanisms.

Unit III: Synthesis of Simple Mechanisms	
8 Hours	

Classification of kinematic synthesis problems -Two position synthesis of slider crank and crank rocker mechanisms - Three position synthesis of double rocker mechanism - Chebychev spacing -Freudenstein analytical method - synthesis of function generator using three precision positions, Graphical and analytical design of a four bar linkage for body guidance, path generation by graphical method.

Unit IV: Kinematics of CAMS 8 Hours

Types of cams and followers - Definitions related cam profile - Derivatives of follower motion – High speed cams – Undercutting - Graphical disk cam profile design - Simple harmonic motion, Constant acceleration and deceleration, constant velocity, Cycloidal motion for knife edge and roller (in-line and offset), flat faced and oscillating followers - Tangent cam with roller follower circular arc cam with flatfaced follower.

Unit V: Kinematics of Gears and Gear Train 8 Hours

Spur gear terminology and definitions - Law of toothed and involute gearing - Interchangeable gears - Gear tooth action - Interference and undercutting - Basics of nonstandard gear teeth -Helical – Bevel – Worm - Rack and pinion gears, cycloidal tooth properties - Comparison of involute and cycloidal tooth forms.

Unit VI:

Model and analysis of mechanisms for different applications.

Suggested Reading

1. S.S. Rattan (2009), "Theory of Machines", 3rd Edition, Tata McGraw-Hill. ISBN: 978-0-070-14477-4.

2. J. Uicker John, Gordon R. Pennock Jr. and Joseph E. Shigly (2011), Theory of Machines and Mechanisms, 4th Edition, Oxford University Press, ISBN: 978-0-199-77781-5.

3. Thomas Bevan (2009), Theory of Machines, 3rd Edition, Pearson Education, ISBN: 978-8-131-72965-6.

4. A. Ghosh (2009), Theory of Mechanisms and Machines, 3rd Edition, East-West Press Pvt. Ltd., New Delhi, ISBN: 978-8-185-93893-6.

5. Kenneth J Waldron and Gary L. Kinzel (2007), Kinematics, Dynamics, and Design of Machinery, 2nd Edition, John-Wiley and Sons Inc., New York, ISBN: 978-8-126-51255-3.

Name of The Course	Heat Engineering					
Course Code	BAUT3	002				
Prerequisite	BTME2002 Engineering Thermodynamics,					
Co-requisite						
Anti-requisite						
		L	Т	Р	С	
		3	0	0	3	

Course Objectives

1.To enable the students understand the principles and performance of IC engines

2To introduce students to the working of compressors, and various refrigeration and air-conditioning systems.

3.To teach students the principles of heat transfer

Course Outcomes

CO1	Solve problems on internal combustion		
COI	engines and prepare heat balance sheet		
CO2	Identify and analyse the different modes of		
002	heat transfer in engineering applications		
CO3	Demonstrate the knowledge of		
005	refrigeration and air-conditioning		
Get an insight of various componen			
CO4	thermal systems viz., compressors,		
	evaporators, condensers etc		

CO6 VAS system, single-effect, double-effect system, staggered grid arrangement	CO5 To compute heat exchanger effectivener and plot temperature distribution.			
	CO6	VAS system, single-effect, double-effect		

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Internal Combustion Engines 8 Hours

Review of Otto, Diesel and Dual thermodynamic cycles, Normal and abnormal combustion in SI engines, Factors affecting knocking. Normal and abnormal combustion in CI engines, Detonation factors and remedies. Performance parameters in IC engines, Measurement of brake power, indicated power, fuel consumption, air consumption, Morse test and Heat balance, effect of various parameters on the performance of the engines.

Unit II: Heat Transfer –I 8 hours

Basic concepts: conduction, convection and radiation, General equation of heat conduction, One dimensional steady state heat conduction in simple geometries: plane wall, cylinder and sphere, Heat transfer in composite walls, composite cylinders and composite spheres, Critical thickness of insulation, Heat generation, Extended surfaces: general equations, types and of fins.fin efficiency applications and effectiveness, Fin performance.Transient heat flow: Lumped parameter system, significance of Biot and Fourier numbers.

Unit-3 Heat Transfer –II 8 hours Boundary layer theory, Conservation equations of mass, momentum and energy for laminar flow over a flat plate, Turbulent flow over a flat plate, Flow over cylinders, spheres, tube bank, Internal flow through pipes, annular spaces, Analogy between momentum and heat transfer, Natural convection in vertical, inclined and horizontal surfaces, Mixed convection, Dimensional analysis.

Unit IV: Condensation, Boiling and Radiation 8 Hours

Unit of refrigeration, vapour compression cycle, components and working, p-h and T-s diagrams, Calculation of COP, Effect of subcooling, super-heating, evaporator pressure and condenser pressure. Actual vapour compression cycle, methods for improving COP. Refrigerants: classification, nomenclature, desirable properties. Psychrometry: properties, relations, chart and processes. Cooling load calculations: SHF, RSHF, GSHF, ESHF.

Unit V: Compressors and Heat exchangers 8 hours

Reciprocating

compressors:construction,working,effect of clearance volume,multi staging, volumetric efficiency,isothermalefficiency.Centrifugal compressors, velocity triangle, Axial flow compressors, surging, choking and stalling. Heat Exchangers – Types and practical applications, Use of LMTD, Effectiveness – NTU method, Compact heat exchangers, Plate heat exchangers, Fouling factor

Unit VI:

Numerical radiation phenomena. Specific intensity of radiation. General formulation of the fundamental equation of radiation (RTE or Radiative Transfer Equation). Review of methods of analysis of radiation in non-participating media. Extension of the formulation to participating media. Introduction to numerical resolution techniques of intensity of spectral and directional radiation according to the DOM (Discrete Ordinate Methods) and FVM (Finite Volume Method) methods.

Suggested Reading

- 1. Onkar Singh, (2009), Applied Thermodynamics, New Age International.
- 2. C.P. Arora, (2009), Refrigeration and Air Conditioning, Tata McGraw-Hill Publishing Company Ltd.
- 3. V. Ganesan, (2008), Internal Combustion Engines, Tata McGraw-Hill Publishing Company Ltd.
- 4. J. P. Holman, (2005), Heat Transfer, 9th Edition, McGraw-Hill Publishing Company Limited

Name of The	Machine Desi	ign			
Course					
Course Code	BETM3007				
Prerequisite	BTME2008				
Co-requisite	BTME3002				
Anti-requisite					
		L	Т	Р	С
		4	0	0	4

Course Objectives

- 1. To understand the design methodologies for various machine elements.
- 2. To understand the various standards and methods of standardization
- 3. To produce working drawings of the system involving shafts, couplings, joints and bearings.

Course Outcomes

CO1	Select the suitable material for machine
	element.
CO2	Design the basic machine elements from
	scratch.
CO3	Analyze the parts of the machine for
	suitable working condition.
CO4	Develop geometric model of designed
	product in CAD software.
CO5	Write brief project report.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

Course Content:

Thrust areas o	f projects with tentative project
titles	
1.	Design of cotter joint
2.	Design of Gib and Cotter joint
	for strap end connecting rod
3.	Design of Gib and Cotter joint
	for rectangular rods
4.	
5.	
6.	0 5
7.	Design of turn buckle
8.	0 0 1
	for boiler shell
9.	0 1
	joint for boiler shall
10.	Design of geared power
	transmission system
	Design of rigid coupling
	Design of flexible coupling
	Design of leaf spring
	Design of multi-disk clutch
15.	Design of flat belt transmission
	system
16.	Design of V-belt transmission
	system
	Design of Chain derive
	Design of sliding contact bearing
	Design of spur gear system
	Design of helical gear system
	Design of Bevel gear system
	Design of flywheel
	Design of pressure vessel
	Design of wire ropes
25.	Design of I.C. engine component

Name of The	Heat Engineering Lab		
Course			
Course Code	BAUT3003		
Prerequisite	BTME2002 Engineering		
_	Thermodynamics		
Co-requisite	BTME3001 Applied		
_	Thermodynamics		

Anti-requisite				
	L	Т	Р	С
	0	0	2	1

Course Objectives

- 1. Identify the various parts of IC engines and explain its functions for running the engines.
- **2.** Evaluate the performance characteristics of air compressor.
- **3.** Study of the effect of forward, backward, curved and radial vanes of the centrifugal blower.

Course Outcomes

CO1	Examine the performance of compressors and blower.
	Analyze the performance of vapour
CO2	compression refrigeration system at
	different operating conditions.
001	Demonstrate the working of air-
CO3	conditioner and its psychrometric test.
004	Calcualte the heat transfer co-efficient for
CO4	free and forced convection.
	Calculate the heat transfer coefficient for
	parallel flow, counter flow heat
CO5	exchangers, and study the radiation heat
	transfer phenomenon.
CO6	

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

Course Content:

LIST OF EXPERIMENTS

- 1. To find out the volumetric efficiency, isothermal power and isothermal efficiency of air Compressor.
- 2. To study the effect of forward, backward, curved and radial vanes and find out the discharge, head and overall efficiency of the centrifugal blower.

- 3. To study the different components of vapour compression refrigeration system.
- 4. To calculate the actual Coefficient of Performance of Vapour compression refrigeration cycle on VCR test Rig and compare with theoretical COP using p-h diagram.
- 5. To determine various psychrometric properties on Air conditioning test Rig.
- 6. To calculate total thermal resistance and thermal conductivity of composite wall.
- 7. To calculate the average heat transfer co-efficient of vertical cylinder under natural convection.
- 8. To calculate the heat transfer coefficient experimentally and theoretically for free and forced convection and compare the theoretical temperature distribution with experimentally obtained distribution.
- 9. To determine the value of Stefan-Boltzman constant for radiation heat transfer.
- 10. To study and compare temperature distribution, heat transfer rate, overall heat transfer coefficient in parallel flow and counter flow heat exchanger.

Suggested Reading

- 1.Lab manuals prepared by faculty.
- 2. NPTEL study materials

Name of The Course	Dynamics of Machines				
Course Code	BTME3008				
Prerequisite	BTME3002 Kinematics of Machines			ntics of	
Co-requisite					
Anti-requisite					
		L	Τ	Р	С
		3	0	0	3

Course Objectives

1. To understand the concepts of turning moment diagrams, flywheel design

and the dynamics of reciprocating engines.

- 2. To understand the balancing procedures for rotating and reciprocating masses, rotors and engines.
- 3. To understand the fundamentals of free and forced vibrations.
- 4. To understand the mechanisms for control.

Course Outcomes

C01	Conduct dynamic force analysis of various systems.	
CO2	Describe static and dynamic balancing of high speed rotary and reciprocating machines.	
CO3	Analyze free and forced vibrations of machines, engines and structures.	
CO4	Calculate the frequency of transverse and torsional vibration systems.	
CO5	Calculate gyroscopic couple and its effect	
CO6	Able to perform modeling and simulation of dynamic system.	

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Dynamic Force Analysis

Hours

8

D'Alembert's principle – Equivalent offset inertia force – Dynamic analysis of four bar mechanism – Dynamic Analysis of reciprocating engines – Piston effort, Crank effort, Turning moment on crankshaft, Inertia of connecting rod – Inertia force in reciprocating engines (Graphical method). Turning moment diagrams – Single and multi cylinder engines – Fluctuation of energy – Fly Wheels – Applications in engines and punching presses. **Unit II:Balancing**

8 Hours

Static and Dynamic balancing of rotating masses – Balancing of reciprocating masses – Balancing of locomotives – Partial balancing of reciprocating masses – Multi cylinder Inline and radial engines.

Unit III: Vibration – Singh Degree of Freedom Systems 8 Hours

Introduction to vibration – Terminology – Classification of vibrations –Undamped and Damped free vibration of single degree of freedom systems – Viscous damping – Introduction to coulomb damping. Forced vibration – harmonic excitation – Magnification factor – Vibration isolation and Transmissibility.

Unit IV: Transverse and Torsional Vibration Systems 8 Hours

Transverse vibrations of shafts and beams – Rayleigh's and Dunkerley's method – Whirling of shafts. Torsional vibrations – Single rotor, two rotors and three rotors systems – Free vibration of geared systems.

Unit V: Mechanism for Control 8 Hours

Functions of Governors – Gravity controlled and Spring controlled governor characteristics. Stability – Hunting and Isochronisms. Effect of friction – Calculation of equilibrium speeds and ranges of speed of governors. Gyroscopic couple – Gyroscopic effects on the movement of air planes and ships – Stability of two wheel drive and four wheel drive – Gyroscope stabilization.

Unit VI

Simulation of dynamic system, Balancing techniques, Modeling and Control of Vibration in Mechanical Structures, Damping mechanism, vibration isolation technologies.

- S.S. Rattan (2009), "Theory of Machines", 3rd Edition, Tata McGraw-Hill Publishing Company Ltd, ISBN: 978-0-070-14477-4.
- J. Uicker John, Gordon R. Pennock Jr., and Joseph E. Shigly (2009), Theory of Machines and Mechanisms, 3rd Edition, Oxford University Press, ISBN: 978-0-198-06232-5.
- 3. J. Peter Sadler and Charles E. Wilson (2008), Kinematics and Dynamics of Machinery, 3rdPearson Education, ISBN: 978-8-131-72022-6.
- Ghosh (2009), Theory of Mechanisms and Machines, 3rd Edition, East-West Press Pvt. Ltd., New Delhi, ISBN: 978-8-185-93893-6.
- T Thomson William, Dillon Dahleh Marie and PadmanabhanChandramouli (2008), Theory of Vibration with applications, 5th Edition, Pearson Education Publishers, ISBN: 978-8-131-70482-0.

Name of The	Dynamics of Machines Laboratory				
Course					
Course Code	BTME3010				
Prerequisite					
Co-requisite BTME3008			ami	cs of	f Machines
Anti-requisite					
		L	Т	Р	С
		0	0	2	1

Course Objectives

- 1. To supplement the principles learnt in Kinematics and Dynamics of Machinery.
- 2. To understand how certain measuring devices are used for dynamic testing.

Course Outcomes

C01	Calculate natural frequency of
COI	longitudinal vibration.
CO2	Determine torsional frequency of a single
002	rotor system.
CO3	Measure the magnitude of gyroscopic
005	couple in a motorized gyroscope.
	Compare Tri-Filar / Bi-Filar system for
CO4	determining moment of inertia of an
	object.

CO5 Calculate the critical speed of a shaft and determine the performance characteristics of governors.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
50	-	50	100

Course Content:

LIST OF EXPERIMENTS

- 1. To determine natural frequency of longitudinal vibration in spring mass system.
- 2. Determination of torsional frequency of a single rotor system.
- 3. To study nomenclature of cam and plotting the cam profile.
- 4. To determine gyroscopic couple on motorized gyroscope.
- 5. Comparative study of different types of clutches
- 6. To determine the frequency of un-damped free vibration of an equivalent spring mass system.
- 7. To perform experiment on Watt and Porter governors to determine performance
- 8. Comparative study of static and dynamic balancing inrotors.
- 9. To find out critical speed and to compare the whirling speed of a shaft.
- 10. To study TRI –FILAR / BI-FILAR System
- 11. Comparative study of different types of clutches

Suggested Reading

1. S.S. Rattan (2009), "Theory of Machines", 3rd Edition, Tata McGraw-Hill Publishing Company Ltd, ISBN: 978-0-070-14477-4.

J. Uicker John, Gordon R. Pennock Jr., and Joseph E. Shigly (2009), Theory of Machines and Mechanisms, 3rd Edition, Oxford University Press, ISBN: 978-0-198-06232-5.

School of Mechanical Engineering

Name of The	Project Managemer	nt			
Course					
Course Code	BTME4010				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		1	0	0	1

Course Objectives

- 1. To acquaint students with basic concepts of the Project Management and its uses in real life situation, the formulation of the problems and basic insight of Capital Budgeting decision.
- 2. To be able to recognize and analyse the Market – Demand & Supply factors affecting the Project Execution and study risk factors associated with Project Management.
- 3. To know how to plan, organize and control the resources to achieve specific goals.

Course Outcomes

CO1	Explain basic concepts of the Project Management and its uses in real life situation.		
CO2	Take decisions about Capital Budgeting.		
CO3	Analyze the Market – Demand & Supply factors affecting the Project Execution.		
CO4	Select the risk factors associated with Project Management.		
CO5	Plan, organize and control the resources to achieve specific goals.		

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Introduction to Project Management
8 Hours

Introduction to Project Management, Uses, scope and applications of Project Management in managerial decision-making, Characteristics of Projects, Classification of Projects: National & International, Project Management: Tools and Techniques, Roles and Responsibilities of Project Manager, Project Life cycle, Project Selection Process.

Unit II: Capital Expenditure Decisions 8 Hours

Meaning and features of capital budgeting decisions, Importance of capital budgeting decisions, Kinds of capital expenditure decisions, Capital expenditure budgeting process, Criteria of capital budgeting, Resource allocation framework and budgeting difficulties.

Unit III: Market Demand Analysis 8 Hours

Information required for marketing and demand analysis, Information required for marketing and demand analysis, Secondary sources of information, Market survey, Demand forecasting, Uncertainties in demand forecasting, Coping with uncertainties: Technical and Financial Analysis.

Unit IV: Determination of Risk factors 8 Hours

Analyses of Project Risk, Market Risk and Firm Risk, Social-Cost, benefit analysis: Need for social cost benefit analysis, Main feature of social cost benefit analysis: UNIDO approach, Little-Mirrless approach.

Unit V: Network Analysis

8 Hours

Rules for drawing the network diagram, Application of CPM and PERT techniques in project planning and control, Illustration by taking numerical examples on CPM and PERT, Case Study: **China Telecom Corporation uses PMI standards to develop communications network for Nanshan District.**

Suggested Reading

- 1. Project Management, Prasanna Chandra, Mc. Graw Hill
- 2. Project Management, S Chaudhry, Tata Mc. Graw Hill.
- 3. Total Quality Management, P.K. Joy, Macmillan Indian Ltd.
- 4. Project Finance, H.R. Machiraju, Vikas Publishing House
- 5. Project Management in Practice, Meredith, Jack R., Sutton, Margaret M., Shafer, Scott M., Wiley.

Name of The Course	Optimization Techniques and Applications				
Course Code	BTME4005				
Prerequisite					
Co-requisite					
Anti-					
requisite					
		L	Т	Р	С
		2	0	0	2

Course Objectives

- 1. To understand the role of optimization in Engineering design and its importance
- 2. To introduce the different optimization techniques for constrained and unconstrained problems

Course Outcomes

CO1	Study and analyze different techniques of optimization and its applications				
CO2	Formulate the design problem in mathematical form which can be solved by suitable optimization algorithm				
CO3	Optimize the constrained and unconstrained design problem				
CO4	Compare the efficiency of different algorithms.				
CO5	Formulate and solve constrained optimization problems of linear and non- linear programming				

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Introduction to Optimization Methods
4 lecture hours
Introduction, Optimization methods in
Engineering, Characteristics of Optimization
Models, Application in Engineering Areas, General Method of Optimization, Limitation of
Optimization Models
Unit II: Unconstrained Single-variable
Optimization 8 lecture hours
Unconstrained Optimization: Optimizing Single-
Variable Functions using Analytical Method,
Maxima-Minima Method of Optimization, Local
and Global Maxima and Minima, Inflection Point, Single –variable Optimization using Bisection
(Newton-Raphson) Numerical method
Unit III: UnConstrained Multi-variable
Optimization
8 lecture hours
Unconstrained Optimization: Optimizing Multi-
Variable Functions using Analytical Method,
Multi-variable Optimization using Numerical
Method: Univariate Method, Hooke-Jeeves
Pattern Search Method
Unit IV: Constrained Optimization for
Linear Programming10 lecture hours
Constrained Optimization, Optimizing
Multivariable Functions with Equality Constraint:
Direct Substitution Method, Constraint Variations
Method, Optimizing Multivariable Functions with
Inequality Constraint, Branch and Bound Method.
Unit V: Constrained Optimization for
-
Nonlinear Programming 10 lecture hours

Kuhn-Tucker Method with Necessary Conditions and Sufficient Conditions. Constrained Optimization techniques for Nonlinear Programming Problems, Factors Affecting a Constrained Problem, Normalization of Constraints, Exterior Penalty Function Method, Interior Penalty Function Method, Introduction to AI in optimization.

Suggested Reading

- Raju, N.V.S. (2014) Optimization methods for Engineers, PHI Publications, ISBN-978-81-203-4744-1.
- Bhavikatti S.S. (2010), Fundamental of Optimum Design IN Engineering, New Age International Publishers, ISBN-978-81-224-2591-8
- Deb Kalyanmoy (2012) Optimization for Engineering Design, PHI Publications, ISBN-978-81-203-4678-9.
- 8. Rao S. S. (2013) Engineering Optimization Theory and Practice, ISBN: 978-81-265-4044-0

Name of The Course	Quality and Reliability Engineering				
Course Code	BTME40006				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	P	С
		2	0	0	2

Course Objectives

- To impart knowledge about the significance of quality and the various tools/ concepts of building quality into products.
- To impart knowledge about plans for acceptance sampling and quality systems.
- To address the underlying concepts, methods and application of Quality and Reliability Engineering.

Course Outcomes

CO1	Apply the tools and techniques of quality to resolve industrial engineering issues.			
CO2	Estimate the obvious and hidden quality costs for a given production system.			
CO3	Prepare and analyze various charts/ methods for quality control and improvement			
CO4	Use plans for sampling and concepts of quality system management.			
CO5	Model various systems applying reliability networks.			

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
30	20	50	100

Course Content:

Unit I:Introduction to Quality	
	8
lecture hours	

Quality - meaning and significance, Essential components of quality, Phases or elements for building quality, Evolution of the concepts of quality, Spiral of progress of quality, Changing scope of quality activities, Ishikawa's seven quality tools, Quality Circles, Quality system economics, Hidden quality costs, Economic models of quality costs.

Unit	II:	Taguchi's	Quality	Loss	Function
					8

lecture hours

System approach for quality management, Juran's quality trilogy, Quality planning activities, Sporadic and chronic quality problems, Causes of variation, General quality control methodology.

Unit III: Statistical Quality Control 8 lecture hours

Control charts for variables: X bar-R, X bar-S, median, XMR charts, Control charts for attributes:

p, np, c charts, Product reliability, Process capability analysis.

Unit	IV:Acceptance	Sampling
		8 lecture hours

Plans and tables for attributes and variables, Sampling methods, Type of plans, Operating characteristic curves, Quality improvement methodology, Justin-time philosophy.ISO 9000 Philosophy: Documentation, Implementation and certification process

8

Unit V: Reliability Concepts

lecture hours

Reliability engineering fundamentals; Failure data analysis; Failure rate; mortality curve; Concept of burn in period; Useful life and wear out phase of a system; Mean time to failure (MTTF); Mean time between failure, (MTBF) and mean time to repair (MTTR); Reliability in terms of Hazard rate and failure density, Conditional probability and multiplication rules.

Suggested Reading

1. Dale H. Besterfield, Carol Besterfield (2018), Total Quality Management (TQM),5th Edition, Pearson Education, ISBN: 978-9353066314.

2. Juran, J.M. and Gryna, F.M, Quality Planning & Analysis, McGraw Hill (2001).

3. Grant, E.L., Statistical Quality Control, McGraw Hill (2008).

4. Feignbaum, A.V., Total Quality Control, McGraw Hill (1991).

5. Juran, J.M., Juran's Quality Control Handbook, McGraw Hill (1988).

6.E. Balagurusamy, Reliability Engineering by Tata McGraw-Hill Publishing Company Limited, 2002.

Name of The Course	Alternative Fuels & Energy Systems				
Course Code	BAUT3054				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives

1. To study the properties of alternative fuels for automobiles.

2. To identify the appropriate alternative fuel system for automobile application

Course Outcomes

CO1	Understand the fuel economy, the fuel conservation and the air fuel ratio, carburettors and various types of fuel injection system.
CO2	Know the properties, performance and emission characteristics of liquid fuels like gasoline, alcohol, vegetable oils in both SI and CI engines.
CO3	Know the properties, performance and emission characteristics of gaseous fuels like LPG, CNG, and Hydrogen.
CO4	Know the modification of SI and CI engines for various alternative fuels
CO5	Demonstrate the knowledge of electric, hybrid and solar powered vehicle.
CO6	Able to understand the electric and Hybrid Vehicles

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I:Introduction

Important properties(Calorific value, Flash point,
fire point, pour point, cloud point, viscosity,
Cetane and Octane number etc) of a fuel. General
characteristics of SI & CI Engines fuels,
estimation of petroleum reserve, need for alternate
fuel, availability of various alternative fuels,
general use of Alcohols, LPG, Hydrogen, CNG,
LNG, Vegetable oils and Biogas.

8 lecture hours

Unit II: Vegetable Oils & Bio-diesel 8 lecture hours Composition & Properties of various vegetable oils for engines; Transesterification reaction and bio-diesel production, Performance and emission characteristics of Bio-diesel.

Unit III: Alcohol Based Fuels

lecture hours

8

Properties as engine fuels, merits and demerits, alcohol as SI and CI engine fuel, alcohols with gasoline& diesel blends, Combustion characteristics and emission characteristics in engines.

Unit IV:Natural Gas and Hydrogen

8 lecture hours Source and composition of CNG, Properties, advantages &disadvantages, performance and emission characteristics of CNG, Introduction to Hydrogen as fuel, Safety and Performance of Hydrogen.

Unit V: Solar Energy and Fuel Cells

lecture hours

Semiconductor and Photovoltaic effect, Solar Cell, advantages & disadvantages of Solar Energy, application of solar energy. Fuel Cells: Types of fuel cell, advantages & disadvantages and applications.

Unit VI:

3 Lecture hours

5

Analysis of electrical drive trains, Topology of electric/hybrid systems, Sizing of components, Electric motors for automobile applications, Electric Propulsion system, Battery Storage

Suggested Reading

1.Richard L. Bechtold (1997), Alternative Fuels Guidebook: Properties, Storage, Dispensing, and Vehicle Facility Modifications, SAE International.

2. V. Ganesan (2004), Internal Combustion Engines, Tata McGraw Hill Co.

3. SAE paper Nos.840367, 841156,841333,841334.

4. Mark L. Poulton, (1994) Alternative fuels for road vehicles, Computational Mechanics

Name of The Course	Electric and Hybrid Vehicles				
Course Code	BAUT3058				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives

1. To study the properties of alternative fuels for automobiles.

2. To identify the appropriate alternative fuel system for automobile application**Course Outcomes**

CO1	Describe the pros and cons of different
	types of EVs and HEVs
CO2	Perform basic designs of EV and HEV
	systems using series, parallel and series-
	parallel architectures.
CO3	Define the testing procedures for EVs and
	HEVs
CO4	Discuss the emerging technologies,
	engineering challenges, and development
	trends in EVs and HEVs.
CO5	Demonstrate the knowledge of electric,
	hybrid and solar powered vehicle.
CO6	Perform initial modelling and simulation
	of basic layout of hybrid-electric vehicle

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Need for alternative system 8
lecture hours
Need of electric vehicles hybrid vehicles –
comparative study of diesel, petrol, pure electric
and hybrid vehicles. Limitations of electric

vehicles. Specification of some electric and hybrid vehicles

Unit II: Energy sources: Batteries and fuel cells

8 lecture hours

Battery Parameters-Power requirement of electric vehicles- Different types of batteries – Lead acid-Nickel based-Sodium based-Lithium based- Metal Air based. Battery charging- Charger design-Quick charging devices- Battery Modeling. Fuel Cell- Fuel cell characteristics- Fuel cell types-Hydrogen fuel cell- Connecting cell in series water management in the PEM fuel cell- Thermal Management of the PEM fuel cell

Unit III: Alcohol Based Fuels

8 lecture hours

A characteristic of permanent magnet and separately exited DC motors. AC single phase and 3-phase motor – inverters – DC and AC motor speed controllers.

Unit IV:Vehicle design considerations for electric vehicles

8 lecture hours

Aerodynamic-Rolling resistance- Transmission efficiency- Vehicle mass- Electric vehicle chassis and Body design considerations- Heating and cooling systems- Controllers- Power steering-Tyre choice-Wing Mirror, Aerials and Luggage racks

Unit V: Hybrid Vehicles 5 lecture hours

Types of Hybrid- Series, parallel, split – parallel, series - parallel - Advantages and Disadvantages. Power split device – Energy Management System - Design consideration - Economy of hybrid vehicles

Unit VI: 3 lecture hours

Simulating In Real Time: Hybrid Electric Vehicle Model, simulate, and deploy a hybrid electric vehicle in the MATLAB & Simulink environment

Suggested Reading

1. Modern Electric, Hybrid Electric, andFuel Cell Vehicles, Fundamentals, Theory, and Design by Mehrdad Ehsani, Texas A&M University, Yimin Gao, Texas A&M University

2. Sebastien E. Gay, Texas A&M University,AliEmadi, Illinois Institute of Technology

3. Ron HodKinson, "light Weight Electric/ Hybrid Vehicle Design", Butterworth Heinemann Publication,2005

4. Lino Guzzella, "Vehicle Propulsion System" Springer Publications,2005.

Name of The Course	Vehicle dyna	amic	s		
Course Code	BAUT3051				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Τ	Р	С
		3	0	0	3

Course Objectives

1. To broaden the understanding of vehicle dynamics.

2. To understand tyre mechanics.

3. To understand performance characteristics of road vehicle and vehicle ride characteristics.

4. To broaden the understanding of stability

Course Outcomes

CO1	Understand mathematical Modeling	
	methods in vehicle dynamics	
CO2	Understand tyre dynamics	
CO3	Design and analyze passive, semi-active	
	and active suspension systems	
CO4	Predict vehicle performance	
CO5	Understand directional control of vehicles	
CO6	perform initial modelling and simulation	
	of basic layout of hybrid-electric vehicle	

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: Introduction to Vehicle Dynamics 8 lecture hours`

Definition by SAE, vehicle control loop, mathematical Modeling methods, multi-body system approach, Newtonian and Legrangian formulation, method of Investigation, stability concepts.

Unit II: Mechanics of Pneumatic Tyres

8 lecture hours

Tyre forces and moments, Tyre structure, Longitudinal and Lateral force at various slip angles, rolling resistance, Tractive and cornering property of tyre, Performance of tyre on wet surface, Ride property of tyres, Tyre model, Estimation of tyre road friction, Test on Various road surfaces, Tyre vibration, SAE recommended practice.

Unit III:Vertical Dynamics

8 lecture hours Human response to vibration, Sources of Vibration. Design and analysis of Passive, Semiactive and active suspension using Quarter car, half car and full car model. Influence of suspension stiffness, suspension damping, and tire stiffness, Control law for LQR, H-Infinite, Skyhook damping, Airsuspension system and their properties

Unit IV:Longitudinal Dynamics And Control 8 lecture hours

Aerodynamic forces and moments, Equation of motion, Tire forces, rolling resistance, Load distribution for three wheeler and four wheeler, Calculation of Maximum acceleration, Reaction forces for Different drives. Braking and Driving torque, Prediction of Vehicle performance, ABS, stability control, Traction control

Unit V: Lateral Dynamics 5 lecture hours

Steady state handling characteristics, Steady state response to steering input,Testing of handling characteristics, Transient response characteristics, Direction control of vehicles, Roll center, Rollaxis,Vehicle under side forces, Stability of vehicle on banked road,during turn, **Effect** of suspension oncornering.

Unit VI: 3 Lecture hours

The modelling and simulation of vehicle

Suggested Reading

1. Ellis J.E.R; Vehicle Dynamics; Business Book London

2. Ramalingam KK; Automobile engineering; Scitech pub

3. Giri N.K.; Automotive Mechanics

4. Wong; Theory of Ground Vehicle; John Wiley & Sons

5. Jazar, Reza N. Vehicle dynamics: theory and application. Springer, 2008

Name of The Course	Two and Three Wheeled Vehicles				
Course Code BAUT3055					
Prerequisite					
Co-requisite	Co-requisite				
Anti-requisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives

1. To discuss about various systems of different two and three wheeled vehicles.

2. To discuss about the recent trends in two wheeled and three wheeled vehicles

Course Outcomes

CO1	Understand the construction and working		
	of two stroke engines		
CO2	Understand the two wheeled vehicle		
	chassis and chassis sub-systems		
CO3	Understand the construction and working		
	of brakes, tyres of two wheeled vehicles		
CO4	Understand the maintenance and		
	servicing of common two wheeled		
	vehicles		
CO5	Understand the construction and working		
	of common three wheeled vehicles		

CO6	Understand the performance parameters
	of Two and Three Wheelers

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
30	20	50	100

Course Content:

Unit I: The Power Unit 8 lecture hours

Two stroke SI engine, merits and demerits, symmetrical and unsymmetrical port timing diagrams, types of scavenging processes, merits and demerits, scavenging efficiency, scavenging pumps. Rotary valve engine, fuel system, lubrication system, magneto coil and battery coil spark ignition system, electronic ignition system, variable timing ignition system (VTI), starting system, kick starter system

Unit II: Chassis and Sub-Systems

lecture hours

Main frame, its types, chassis, shaft drive and chain drive, single, multiple and centrifugal clutches, gear box and gear controls, front and rear suspension systems, shock absorbers. Panel meters and controls on handle bar

8

Unit III:Brakes and Wheels

8 lecture hours Drum brakes & Disc brakes Construction and Working and its Types, Front and Rear brake links layouts.Brake actuation mechanism, Spoked wheel, cast wheel, Disc wheel & its merits and demerits, Tyres and tubes Construction & its Types, Steering geometry.

Unit IV:Two Wheelers

8 lecture hours

Case study of popular Indian motor cycle models, scooters, scooterettes and mopeds, and their Servicing and maintenance

Unit V: Three Wheelers 5 lecture hours

Case study of Indian Three wheeler models, Front mounted engine and rear mounted engine types, Auto rickshaws, Pick up vans, Delivery vans and

Trailers, E- Rickshaws, and their Servicing and maintenance.

Unit VI: Two three wheelers characteristics 4 Lecture hours

Handling characteristics, seating arrangement for driver & pillion rider, ergonomics & comfort, road holding & vehicle stability, riding characteristics, safety arrangements, Racing bikes – special requirements.

Suggested Reading

1. Irving P E (1992), Motor cycle engineering, Temple Press Book, London.

2. Dhruv U. Panchal (2015), Two And Three Wheeler Technology, PHI Learning; 1 edition

3. Newton Steed (2000), "The Motor Vehicle", McGraw Hill Book Co. Ltd., New Delhi

Name of The Course	Automotive Transmission Systems				
Course Code					
Prerequisite	BTME3002				
Co-requisite					
Anti-requisite	Anti-requisite				
		L	Т	Р	С
		3	0	0	3

Course Objectives

1. To study the working of engines.

- 2. To study Engine parts and their functions
- 3. To study the Different Engine technologies

Course Outcomes

CO1	Demonstrate the knowledge of different		
	automotive axles		
CO2	Demonstrate the knowledge of different		
	automotive clutches		
CO3	Understand the constructional details of		
	gear boxes		
CO4	Demonstrate the knowledge of wheel		
	drives		
CO5	Understand the automatic transmission		
	systems		

CO6	Understand the importance and working of				
	emerging	technologies	in	Automobile	
	Transmission systems.				

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I:Introduction 8 lecture hours

Transmission requirements: requirements of transmission system, general arrangement of power transmission, general arrangement of rearengine vehicle with live axles, general arrangement of dead- axle and axles transmission; four-wheel-drive transmission

Unit II: Automotive clutches

8

lecture hours

Clutches Requirements of clutches, principle of friction clutches, types of clutches and materials used- cone, single-plate, diaphragm-spring, multiplate, centrifugal, over-running and ferroelectromagnetic clutch

Unit III:Automotive Gear boxes 8 lecture hours

Need of gear boxes, types- sliding mesh, constant mesh and epicyclic, gear boxes; synchronizers: principle, early and later Warner synchronizer, Vauxhall synchronizer- gear materials lubrication and design of gear box; Hydrodynamic drive: Advantages and limitations, principle of fluid coupling, constructional details, torque-capacity performance characteristics, drag torque, methods of minimizing drag torque; Torque converter: performance characteristics; single, multistage and poly-phase torque converters, convertercoupling-performance characteristics, couplingblade angle and fluid flow, converter fluid

Unit IV:Transmission systems-Drive line 8 lecture hours

Definition, forces & torques acting; types of drives-Hotchkiss, torque tube & radius rod drives; components- propeller shaft, slip joint, universal joints & constant velocity universal joints; front wheel drive; Final drive: definition; types- wormwheel, straight-bevel gear, spiral-bevel gear & hypoid-gear drives; double-reduction & twinspeed final drives; Differential: Function, principle, construction and working; non-slip differential; differential lock; rear axle- loads acting & types; multi-axled vehicles

Unit V: Automatic transmission 5 lecture hours

Chevrolet turboglide transmission, power glide transmission, hydraulic control system of automatic transmission; Electric drive: advantages and limitations, principle of early and modified Ward-Leonard system, modern electric drive for buses; performance characteristics.

Unit 6: 3 Lecture hours

Block diagrams of-Chevrolet "Turbo-glide" Transmission, Power-glide Transmission & Clutch Hydraulic Actuation system, Introduction to Toyota "ECT-i" Automatic Transmission with Intelligent Electronic controls system.

Suggested Reading

- 1. Heldt P.M.; Torque converters; Chilton Book Co.
- 2. Giri NK; Automobile Engineering; Khanna Publisher
- 3. Newton, Steeds & Garret; Motor Vehicles; B.H. Publication.
- 4. Judge, A.W., Modern Transmission Systems, Chapman & Hall Ltd.
- 5. Chek Chart; Automotive Transmission; Harper & Row Publication.

Name of The Course	Automotive Chassis and Body Engineering				
Course Code	BAUT3004				
Prerequisite	Prerequisite BTME2008				
Co-requisite					
Anti-requisite	Anti-requisite				
		L	Т	Р	С
		3	0	0	3

Course Objectives

1. To broaden the understanding of details of car body aspects.

2. To introduce car body and bus body details used.

3. To broaden the understanding of students in the structure of vehicle chassis.

4. To introduce students to steering, suspension and braking systems.

Course Outcomes

CO1	Understand the construction details of		
	various types of automotive chassis and		
	basic functions of subsystems in the		
	chassis.		
CO2	Demonstrate knowledgeof various types		
	of suspension		
	systems.		
CO3	Demonstrate knowledgeof various types		
	of brake system		
CO4	Demonstrate knowledge of steering		
	system, wheels & tyres in the vehicles		
CO5	Understand various safety provisions		
CO6	Perform simulation on chassis system by		
	applying varying loads		

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I:Introduction 8 lecture hours

General consideration relating to chassis layout, types of automobiles, layout of an automobile, weight distribution, stability, Terms used in body building construction, Angle of approach, Angle of departure, Ground clearance, Cross bearers, Floor longitudes, posts, seat rail, waist rail, cant rail, Roof stick, Roof longitude, Rub rail, skirt rail, truss panel, wheel arch structure.

Unit II: Vehicle Body

lecture hours

8

Car Body: Types, Regulations, drivers visibility, tests for visibility, methods for improving

visibility and space in cars, safety design, safety requirements for car, car body construction. Bus Body Details: Types, bus body layout, floor height, engine location, entrance and exit locations, seating dimensions, constructional details, frame construction.

Unit III:Axle And Steering Systems 8 lecture hours

Axle parts and materials, loads and stresses, centre sections, section near steering head, spring pads, front axle loads, rear axles loads, types of rear axles, multi axles vehicles, steering heads, factors of wheel alignment, wheel balancing, centre point steering, correct steering angle, steering mechanisms, cornering force, self righting torque, under steer and over steer, Steering linkages, steering gears, special steering columns, power steering

Unit IV:Brakes

8 lecture hours

Necessity, stopping distance and time, brake efficiency, weight transfer, brake shoe theory, determination of braking torque, classification of brakes, types, construction, function, operation, braking systems, bleeding of brakes, brake drums, brake linings, brake fluid, factors influencing operation of brakes such as operating temperature, lining, brake clearance, pedal pressure, linkages etc, Numerical problems. Brake compensation, Parking and emergency brakes

Unit V: Suspension & Wheels and Tyres 5 lecture hours

Springs: Operation & materials, type leaf springs, air bellows or pneumatic suspension, hydraulic suspension, telescopic shock absorbers, independent suspension, front wheel independent suspension, rear wheel independent suspension, types, stabilizer, trouble shooting, Numerical problems. Types of wheels, construction, structure and function, wheel dimensions, structure and function of tyres, types of tyres, materials, tyre section & designation, factors affecting tyre life.

Unit VI:

3 Lecture hours

Simulation on chassis system by applying varying loads

- P.M. Heldt (2010), Automotive Chassis, Chilton & Co.
- S. S. Rattan (2004), Automotive Mechanics, N.K. Giri, Khanna Publications, New Delhi.
- 3. T.R. Banga&Nathu Singh, (1993), Automobile Engineering, Khanna Publications.
- Joseph I Heintner, (1967), automotive mechanics, Affiliated East West press, New Delhi/Madras.

Name of The Course	Aerodynamics Design of Vehicle				
Course Code	BAUT3063				
Prerequisite					
Co-requisite					
Anti-requisite					
		L	Τ	Р	С
		3	0	0	3

Course Objectives

1. To broaden the understanding of aerodynamics.

2. Understand how to approach various industrial applications using CFD..

3. Hands on experience on many leading commercial

Course Outcomes

CO1	Understand basic fluid theory
CO2	Understand basics of CFD
CO3	Develop solutions using various
	commercial solvers and validate the
	results using standard solutions
CO4	Compare various types of grids for
	approaching accurate solution.
CO5	Analyse the aerodynamic issues related to
	specified automobile design case
CO6	perform full simulation of automotive
	vehicle

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I:Fundamentals of Aerodynamics 8 lecture hours

Scope – Development trends – Flow phenomena related to vehicles – External and Internal flow problems – Performance of cars and light vans – Resistance to vehicle motion – Drag –Types of drag – Flow field around car – Aerodynamic development of cars – Optimization of car bodies for low drag. Navier Stokes equation

Unit II: Basics Of CFD

8 lecture hours

Basic aspects of discretization, finite difference method, difference equations, Explicit and Implicit schemes, stability analysis Onedimensional steady state diffusion Steady onedimensional convection and diffusion, pressure correction technique, SIMPLE algorithm.

Unit III:ANSYS Software

8 lecture hours

An introduction to several commercial CFD software codes and their applications to the governing differential equations, solution procedures, interpretation of the results, visualization of the results and the built in graphics will be described.

Unit IV:Mesh Generation With CommercialCfd Codes8 lecture hours

Introduction of Gambit, ICEMCFD, FLUENT, CFX, Ansys Package to give students a taste of various commercial CFD software applications

Unit V: Aerodynamic Design

5 lecture hours

Simulation and case studies –cars, buses, trucks

Unit VI: 3 Lecture hours

Tubulent flow simulation and analysis of ahmed body, simulation of auto motive vehicle fromscratch

Suggested Reading

- 1. Vehicle Aerodynamics, SAE, 1996.
- 2. Schlichting, H (1999), Boundary Layer Theory, McGraw Hill, New York
- John D Anderson, Jr., Computational Fluid Dynamics -The Basics with Applications, McGraw Hill, 1995

Program: M.Tech in Automobile Engineering

Scheme: 2020-2021

Vision

To be known as a premier department in mechanical engineering by synergizing teaching, learning and research to produce competent Mechanical Engineers with an exposure to interdisciplinary engineering knowledge.

Mission

MD1: Create an effective foundation in the field of production, design, thermal, industrial and automation engineering by imparting quality education.

MD2: Conduct interdisciplinary research leading to the delivery of innovative technologies through Problem and Research Based Learning.

MD3: Provide relevant industrial experience that instills the problem solving approach; integrate the product design to manufacturing life cycle management.

MD4: Prepare students for careers in academia and various industrial organization related to mechanical and allied engineering.

Program Educational Objectives

PEO1: Graduates of Mechanical Engineering shall be engineering professionals and innovators in core engineering, service industries or pursue higher studies.

PEO2: Graduates of Mechanical Engineering shall be competent in latest technologies by exploiting automation and smart manufacturing tools to address various industry 4.0 problems.

PEO3: Graduates of Mechanical Engineering shall leverage their imbibed skill through continuous working on technologies like drone and additive manufacturing knowledge to transform the society.

Program Outcomes

- 1. Engineering Knowledge : Apply the knowledge of Mathematics, Science, and Engineering fundamentals, and an engineering specialization to solution of complex engineering problems.
- 2. Problem analysis : Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
- 3. Design/development of solutions : Design of solutions for complex engineering problems and design of system components or processes that meet the specified needs with appropriate considerations of public health and safety, and cultural, societal, and environmental considerations.
- 4. Conduct investigations of complex problems : Use research based methods including design of experiments, analysis and interpretation of data and synthesis of information leading to logical conclusions.
- 5. Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling complex engineering activities with an understanding of limitations.
- 6. The engineer and society : Apply reasoning within the contextual knowledge to access societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. Environment and sustainability : Understand the impact of the professional engineering solutions in the societal and environmental contexts, and demonstrate the knowledge of, and the need for sustainable developments.

- 8. Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.
- 9. Individual and team work : Function effectively as an individual independently and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large such give and receive clear instructions.
- 11. Project management and finance : Demonstrate knowledge and understanding of engineering management principles and apply those to one's own work as a member and leader of a team to manage projects in multidisciplinary environments.
- 12. Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Curriculum

		Semester 1							
S1.	Course Code	Name of the Course			1	r		sment Pa	
No	Course Coue		L	Т	Р	С	IA	MTE	ETE
1	MATH5001	Advanced Numerical and Statistical Methods	3	1	0	4	20	50	100
2	MAUE5001	Automotive Engine & Emission	3	0	0	3	20	50	100
3	MAUE5002	Transmission System Theory & Design	3	0	0	3	20	50	100
4	MAUE5003	Engine Design	3	0	0	3	20	50	100
5	MAUE5004	Chassis and Body Engineering	3	0	0	3	20	50	100
6	MAUE5005	Automotive Vehicle Dynamics	3	0	0	3	20	50	100
		Total	18	1	0	19			
		Semester II							
S1	Course Codee	Name of the Course		1		1		sment Pa	
No	Course Course		L	Т	Р	С	IA	MTE	ETE
1	CENG5001	Professional and Communication Skills	0	0	4	2	70	-	30
2	MCDM5006	Finite Element Methods	2	1	0	3	20	50	100
3	MAUE5007	Combustion Engineering	3	0	0	3	20	50	100
4	MAUE5008	Computational Fluid Dynamics	3	0	0	3	20	50	100
5	MAUE5009	Transmission System Design Lab	0	0	2	1	70	-	30
6	MAUE5010	Engine Testing and Pollution Measurement Lab	0	0	2	1	70	-	30
7		Elective 1	3	0	0	3	20	50	100
8		Elective 2	3	0	0	3	20	50	100
9		Data Analysis	0	0	2	1	70	-	30
		Total	14	1	10	20			
		Semester III			1	1			
S1	~ ~ .						Asses	sment Pa	ttern
No	Course Code	Name of the Course	L	Т	Р	С	IA	MTE	ETE
1	MAUE6001	Vehicle Testing Lab	0	0	2	1	70	-	30
2	MAUE6002	Automotive Engine and Chassis Components Lab	0	0	2	1	70	-	30
3	MAUE9998	Dissertation-1	-	-	-	5	50	-	50
4	~ ~ ~	Elective 3	3	0	0	3	20	50	100
5		Elective 4	3	0	0	3	20	50	100
6		Elective 5	3	0	0	3	20	50	100
~		Total	9	0	6	16			100
	<u> </u>	Semester IV	<i>´</i>	Ĭ	Ŭ		1	I	L
S1							Asses	sment Pa	ttern
No	Course Code	Name of the Course	L	Т	Р	С	IA	MTE	ETE
1	MAUE9999	Dissertation-2	-	-	-	15	50	-	50
-			L	I	<u> </u>				

C1							1	amont Do	ttama
S1	Course Code	Name of the Electives	_		_	~		sment Pa	
No			L	Т	Р	С	IA	MTE	ETE
1	MAUE5011	Simulation of Automobile Systems	3	0	0	3	20	50	100
2	MAUE5012	Automobile Air Conditioning	3	0	0	3	20	50	100
3	MAUE5013	Transport Management	3	0	0	3	20	50	100
4		Vehicle Maintenance and Fleet					20	50	100
4	MAUE5014	Management	3	0	0	3	20	50	100
5	MAUE5015	Tractor and Farm Equipments	3	0	0	3	20	50	100
6		Design and Analysis of					20	50	100
6	MCDM5018	Experiments	3	0	0	3	20	30	100
7		Alternative Fuels and Power					20	50	100
	MAUE5017	Systems	3	0	0	3	20	30	100
8	MAUE5018	Special Purpose Vehicles	3	0	0	3	20	50	100
9	MAUE5019	Safety, Health and Environment	3	0	0	3	20	50	100
10	MAUE5020	Hydraulics and Pneumatics	3	0	0	3	20	50	100
11	MAUE5021	Vehicle Aerodynamics	3	0	0	3	20	50	100
12	MAUE5022	Automotive Safety	3	0	0	3	20	50	100
13	MAUE5023	Advanced Heat and mass Transfer	3	0	0	3	20	50	100

List of Electives

Detailed Syllabus

Name of The	Professional and					
Course	Communicat	Communication Skills				
Course Code	CENG 5001					
Prerequisite						
Corequisite						
Antirequisite						
		L	Т	Р	С	
		0	0	4	2	

Course Objective:

- 1. To develop the professional and communicational skills of learners in a technical environment.
- 2. To enable students acquire functional and technical writing skills.
- 3. To enable students acquire presentation skills to technical and non-technical audience.

Course Outcomes:

CO1	Improve their reading fluency skills
	through extensive reading
CO2	Use and assess information from
	academic sources, distinguishing between
	main ideas and details
CO3	Compare and use a range official support
	through formal and informal writings
CO4	The students will be able to exhibit
	language proficiency in comprehending,
	describing, and investigating.

Text Books

Rajendra Pal and J.S.Korlahalli. Essentials of Business Communication. Sultan Chand & Sons. New Delhi.

Reference Books

- Kaul. Asha. Effective Business Communication.PHI Learning Pvt. Ltd. New Delhi.2011.
- 2. Murphy, Essential English Grammar, CUP.
- 3. J S Nesfield, English Grammar: Composition and Usage
- 4. Muralikrishna and S. Mishra,

Communication Skills for Engineers.

/

UNIT 1:

Aspects of Communication; Sounds of syllables; Past tense and plural endings; Organizational techniques in Technical Writing; Paragraph Writing, Note taking, Techniques of presentation UNIT 2:

Tense, Voice, conditionals, Techno-words; Basic concepts of pronunciation; word stress; Business letters, email, Techniques for Power Point Presentations; Dos and don'ts of Group Discussion

UNIT 3:

An introduction to Modal and Phrasal verbs; Expansion; Word formation; Technical Resume; Company Profile Presentation; Interview Skills

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
70	-	30	100

Name of The Course	Advanced Numerical and Statistical Methods					
Course Code	MATH5001					
Prerequisite						
Corequisite						
Antirequisite						
		L	Т	Р	С	
		3	1	0	4	

Course Objectives:

With ever growing demand of computational techniques, scope of numerical methods is penetrating aggressively into major fields including important and Science, Engineering & Technology, Medical, Space Science, Economics, Business and Environment. The objective is to achieve knowledge and understanding of numerical methods and to apply appropriate methods to model and solve problems where ordinary analytical methods fail.

Statistical methods are used in manufacturing, development of food product,

computer software, energy sources, pharmaceuticals and many other areas. The objective of statistics and probability is to analyze data to make scientific judgments in the face of uncertainty and variation for the improvement of the desired quality.

Course Outcomes

CO1	Apply various numerical methods to solve system of linear and non-linear
	equations.
CO2	Apply standard interpolation methods to
	interpolate required/ missing value.
CO3	Apply appropriate methods of numerical
	differentiation /integration to solve related
	problems.
CO4	Solve ordinary differential equations and
	partial differential equations using
	appropriate numerical methods.
CO5	Identify the type of distributions and
	apply a suitable test to draw the
	conclusion.

Continuous Assessment Pattern

Internal Assessment (IA)	Mid Term Exam (MTE)	End Term Exam (ETE)	Total Marks
20	30	50	100

Course Content:

Unit I: System of Linear Equations 8

System of Linear Equations: Direct Methods-Gauss elimination – Pivoting, Partial and Total Pivoting, Triangular factorization method using Crout LU decomposition, Cholesky method, Iterative Method- Gauss- Seidel and Jacobi method, ill conditioned matrix System of Nonlinear equation- Newton Raphson and Modified Newton Raphson Method. Iterative methods Unit II: Interpolation and Approximation

Interpolation and Approximation: Lagrange, Spline and Hermite interpolation, Approximations, Error of approximation, Norms for discrete and continuous data, Least square approximation.

Unit III: Numerical Integration: 6 Hours

Numerical Integration: Newton Cotes closed Quadrature, Gauss Legendre Quadrature, Multiple Integration An introduction to Modal and Phrasal verbs; Expansion; Word formation; Technical Resume; Company Profile Presentation; Interview Skills

Unit IV: Numerical Solution of Differential Equations 9 Hours

Numerical Solution of Differential Equations: Finite Difference Schemes, Numerical solution of Ordinary differential equation using Modified Euler's method, Runge-Kutta method of 2nd, 3rd and 4th orders, Predictor- Corrector method, Solution of Laplace's and Poisson's equations by Liebman's method, Solution of one dimensional time dependent heat flow.

Unit V: Probability and statistics

9 Hours

Probability and statistics: Review of concept of probability, Random Variables, Continuous and discrete distribution function, moments and moments generating functions, Binomial, Poisson, Negative Binomial, Geometric and Hyper-geometric Distributions, Uniform, Normal, Exponential, Gamma and Beta distributions. Point and Interval estimation, Testing of Hypothesis (ttest and chi square test), Analysis of variance and Introduction of Design of experiments.

Suggested Reading

- Numerical Methods for Scientific and Engineering Computation (6th edition) by Jain, Iyengar & Jain, New Age International publishers.
- 2. Probability & Statistics for Engineers & Scientists (9th edition) by R.E.Walpole,

R,H,Myers&K.Ye.

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Automotive e emission	engir	ies a	nd	
Course Code	MAUE5001				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	P	С
		3	0	0	3

Course Objectives:

This subject is taught to impart knowledge of working principle of engines, fuel combustion, emission and emission control.

Course Outcomes

CO1	Summarize the principle and need of carburetion, lubrication and cooling in vehicles (K3)		
CO2	Analyze different combustion mechanisms and flame propagation (K4)		
CO3	Investigate the emission characteristics of vehicle engine and control mechanisms (K4)		
CO4	Identify the need for alternative fuels, their sources and properties(K3)		
CO5	Solve the heat transfer problems using FEM (K3)		
CO6	understand the new trends of automobile bio fuels, it's engine modification and research on new generation of biofuels		

Text Book (s) and Reference Book (s)

1. Richard Stone, *Introduction to Internal Combustion Engines*, McMillan, London. ISBN-978-0-333-37593-8.

2. Hein Heister, *Vehicle and Engine Technology*, Butterworth-Heinemann Ltd ISBN- 978-0-340-69186-1. 3. Hein Heister, *Advance Vehicle Technology*, Society of Automotive Engineers Inc. ISBN- 978-0-768-01071-8.

4. E. F. Obert, (1973), *I. C. Engine & Air Pollution*, Harper & Row Publishers, New York. ISBN 0-352-04560-0.

5. C. Fayette Taylor & Edward S. Taylor, *I. C. Engines*, International text book com, ISBN-978-0-700-22096-0.

6. V. L. Maleev, *I.C. Engine*, McGraw Hill Book, Co. ISBN- 978-0-070-85471-0.

7. Ferguson, *Internal Combustion Engines: Applied Thermosciences*, John Wiley &Sons, ISBN- 978-0-471-35617-2.

8. Charles A. Fisher, S.I. Engine – Fuel Injection Development, Chapman & Hall.

9. Herbert E. Ellinger, *Automotive Engines*. ISBN-978-0-130-55426-0.

10. John B. Heyhood, *Internal Combustion Engines Fundamentals*, McGraw Hill. ISBN-978-0-070-28637-5.

Unit-1 Introduction 6 hours Fuel Supply, Ignition, Cooling2 and Lubrication Systems – Theory of carburetion and carburettors, A/F ratio, petrol injection, diesel fuel injection pumps, conventional and electronic ignition systems for SI engines, cooling systems, design aspects, lubrication systems. Unit-2 Combustion of fuel and combustion chambers 6 hours Air Motion Combustion and Combustion Chambers: Swirl and turbulence – swirl generation, combustion in SI & CI engines, flame travel and detonation, Ignition delay, Knock in CI engines, combustion chamber design. Unit-3 Automobile emission and control 9 hours Sources of Emission, Exhaust gas constituents & analysis, Ingredients responsible for air pollution, Smoke, odour, Smog formation. Exhaust Emission Control: Basic method of emission control, catalytic converter, After burners, reactor manifold, air injection, crank case emission control, evaporative loss control, Exhaust gas recirculation, Fuel additives. Pollution Norms : European pollution norms, Indian pollution norms as per Central Motor Vehicle Rules (C.M.V.R.). Unit-4 Exhaust Emission Measurement and alternative fuel 10 hours

Instrumentation for Exhaust Emission Measurement: Measurement procedure, Sampling Methods, Orsat Apparatus, Infrared Gas analyzer, Flame Ionization Detector (FID), Smoke meters. Alternative Fuels: CNG, LPG, Bio-Diesel, Hydrogen, fuel cells, Eco-friendly vehicles, Electric & Solar operated vehicle.

Unit-5 Dynamic Analysis using Finite Elements 9 hours

Introduction to vibration problems, Consistent and Lumped mass matrices, Form of finite element equations for vibration problems, Eigen value Problems, Transient vibration analysis and unsteady heat transfer problem

Unit-6

Study of all available biofuels, and it's commercial status, engine modification as per biofuels characteristics, emissions analysis, modification in emission control system, exhaust heat utilisation, and research issue on new generation of biofuels and it's feasibility.

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Transmission system theory and design				
Course Code	MAUE5002				
Prerequisite	Machine Design, Dynamics of Machinery				
Corequisite	-				
Antirequisite	-				
	L T P C				
	3 0 0 3				

Course Objectives:

The objective of teaching this subject to the students is to acquaint them with the detailed knowledge of transmission systems, braking system and steering system of an automobile.

CO1	Identify the various elements of				
	transmission system of an automobile				
CO2	Summarize the different joints and axles				
CO3	Apply different breaking system in				
	different vehicles				
CO4	Explain various component of steering				
	system				
CO5	Understand and application of electric				
	and Hydrodynamic drive				
CO6	Understand the Application of Automatic				
	Transmission systems				

Text Book (s) and Reference Book (s)

 Reimpell J., *The Automotive Chassis – Engineering Principle*, ISBN- 978-0-750-65054-0.
 P. Lukin, G. Gasparyarts, V. Rodionov, *Automotive Chassis-Design & Calculation*, MIR Publishing, Moskow ISBN- 978-5-030-00081-7.
 P. M. Heldt, *Automotive Chassis*, Chilton Co. NK

4. W. Steed, *Mechanics for Road Vehicles*, Illiffe Books Ltd., London

Unit-1 Introduction Transmission system 6 hours

Transmission systems : Clutch, types of clutch, clutch design, Gear box, types of gear boxes, gear box design, overdrive gears, Fluid flywheel & torque converter, Epicyclic gear box, semiautomatic & automatic transmission.

Unit-2 Propeller Shaft and Final Drive

6 hours

Propeller shaft, design of propeller shaft, slips joint, universal joint, Final drive, differential, Dead & live axle, axle design, Constant velocity joints.

Unit-3 Braking System 9 hours

Braking system – types of brakes, brakeactuating mechanisms, factors affecting brake performance, power & power assisted brakes, Brake system design, recent developments in transmission & braking system

Unit-4 Steering System

9 hours

Steering systems : Front axle types, constructional details, front wheel geometry, Condition for True rolling, skidding, steering linkages for conventional & independent suspensions, turning radius, wheel wobble and shimmy, power and power assisted steering Unit-5

Fluid coupling-principle of operation, constructional details, Torque capacity, Performance characteristics, Reduction of drag torque, Torque converter, converter coupling-Principle of operation, constructional details & performance characteristics, Electric drive-Electric drive, Principle of early and modified Ward Leonard Control system, Advantage & limitations, Performance characteristics Unit-6

Block diagrams of-Chevrolet "Turbo-glide" Transmission, Power-glide Transmission & Clutch Hydraulic Actuation system, Introduction to Toyota "ECT-i" Automatic Transmission with Intelligent Electronic controls system

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Engine Design				
Course Code	MAUE5003				
Prerequisite	-				
Corequisite	-				
Antirequisite	-				
		L	Т	Р	С
	3 0 0 3			3	

Course Objectives:

This subject acquaints students with the engine design and various parameters dealing with the engine design.

Course Outcomes

CO1	Examine basic design parameter of engine cylinder head
CO2	Calculate forces and moments in the design of cylinder head, cylinder block, piston, piston ring, fly wheel and valve mechanism.
CO3	Point out the correct firing order based on forces and design principal of cooling system, inlet and outlet valve system.
CO4	Calculate various dimensions of fuel injection systems.
CO5	Calculate various dimensions of carburetor
CO6	To know about nonconventional engines

Text Book (s) and Reference Book (s)

1. E. F. Obert, (1973), *I. C. Engine & Air Pollution*, Harper & Row Publishers, New York. ISBN 0-352-04560-0.

 Giles J. G., *Engine Design*, Lliffe Book Ltd.
 W. H. Crouse ,*Engine Design*, Tata McGraw Publication, Delhi ISBN-978-0-070-14671-6.
 V. L. Maleev, *I.C. Engine*, McGraw Hill Book, Co. ISBN- 978-0-070-85471-0.
 Litchy, *I. C. Engine*

6. SAE Handbooks

Unit-1 Engine Cylinder Design

10 hours
Determination of engine power, Engine selection,
swept volume, stroke, bore & no. of cylinders,
Arrangement of cylinders stroke to bore ratio.

Unit-2 Engine Head Design

10 hours

Design procedure of theoretical analysis, design considerations, material selection & actual design of components - cylinder block deign, cylinder head design, piston & piston pin design, piston ring design, connecting rod design, crankshaft design, flywheel design, design of valve mechanism.

Unit-3 Various Forces and Moments in Engine Design

9 hours

Engine balancing, firing order, longitudinal forces, transverse forces, pitching moments, yawing moments, Engine layout, major critical speed & minor critical speed, design of engine mounting, design of cooling system, design principles of exhaust & inlet systems

Unit-4 Fuel Injection Design

9 hours

Primary design calculation of major dimensions of fuel injection system.

Unit-5

Common rail direct injection engine, dual fuel and multi fuel engine, gasoline direct injection engine stirling engine, wankel engine, variable compression ratio engine

Unit-6 Non-Conventional Engines

Energy conversion systems, Latest design strategies of non conventional systems

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Chassis and body engineering				
Course Code	MAUE5004				
Prerequisite	Automobile Engineering				
Corequisite	-				
Antirequisite	-				
	L T P C				
	3 0 0 3				

Course Objectives:

This subject makes students familiar with the aerodynamics, body details, body design and stress analysis of the automobile.

Course Outcomes

001	
CO1	Identify the various types of
	aerodynamics drag, forces and moment in
	vehicle body. (K3)
CO2	Understand the details of vehicle body,
	roofs, under floor, bonnet, boot and wings
	(K2)
CO3	Summarise various design parameters of
	vehicle body (K3)
CO4	Analyze the stresses in the bus body
	under bending and torsion (K4)
CO5	Demonstrate various case studies on
	chassis frame related to stress and
	deflection analysis (K3)
CO6	To apply principle of optimization vehicle
	body

Text Book (s) and Reference Book (s)

 J. Y. Woung, *Theory of Ground Vehicles*, John Willey & Sons, NY ISBN- 978-0-471-35461-1.
 J. G. Giles, *Steering, Suspension & Tyres*, Illefe Books Ltd. London ISBN- 978-0-592-00620-8.
 W. Steed, *Mechanics of Road Vehicles*, Illefe Books Ltd. London

4. P. M. Heldt, Automotive Chassis, Chilton Co. NK

Unit-1 Vehicle Aerodynamics

7 hours

Vehicle Aerodynamics : Objects- vehicle drag and types, various types of forces and moments, effects of forces and moments, various body optimization techniques for minimum drag, principle of wind tunnel technology, flow visualization techniques, tests with scale models Unit-2 Car Body Details

6 hours

Car Body Details : Types of car bodies, visibility, regulations, driver's visibility, methods of improving visibility, safety design, constructional details of roof, under floor, bonnet, boot, wings etc, Classification of coach work.

Unit-3 Design of Vehicle Bodies

9 hours

Design of Vehicle Bodies: Vehicle body materials, Layout of the design, preliminary design, safety, Idealized structure- structural surface, shear panel method, symmetric and asymmetrical vertical loads in car, longitudinal loads, different loading situations- load distribution on vehicle structure.

Unit-4 Stress Calculation and Analysis

9 hours

Calculation of loading cases, stress analysis of bus body structure under bending and torsion, stress analysis in integral bus body, Design of chassis frame, Rules and regulations for body, Recent safety measures, Testing of body

Unit-5 Case study report and review 9 hours

Case study on Heavy commercial vehicle chassis frame, detailed design of chassis frame, stress and deflection analysis of chassis frame.

Unit-6

study of structural optimization design, Multiobjective optimization design, vehicle body modal analysis and its performance, multi-objective optimization fixture layout, multi-objective optimization hydraulic steering system

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Automotive Vehicle Dynamics					
Course Code	MAUE5005					
Prerequisite	-					
Corequisite	-					
Antirequisite	-					
•	L T P C					

Course Objectives:

The aim of teaching this subject is to make students aware of the suspension system, handling characteristics of an automobile like steering geometry and vibrations.

Course Outcomes

CO1	Understand the basics of suspension
	system and its types (K2)
CO2	Identify with steering dynamics according
	to road (K2)
CO3	Use stability analysis for better control
	(K3)
CO4	Apply ride characteristics for better
	design (K3)
CO5	Understand vibration in order to ride
	comfortable (K2)
CO6	Apply simulation of vehicle
	dynamics(K3)

Text Book (s) and Reference Book (s)

 J. Y. Woung, *Theory of Ground Vehicles*, John Willey & Sons, NY ISBN- 978-0-471-35461-1.
 J. G. Giles, *Steering, Suspension & Tyres*, Illefe Books Ltd. London ISBN- 978-0-592-00620-8.
 W. Steed, *Mechanics of Road Vehicles*, Illefe Books Ltd. London

4. P. M. Heldt, Automotive Chassis, Chilton Co. NK

Unit-1 Suspension System	
8 hours	

Suspension system - requirements, types, air suspension, rubber suspension, Shock absorbers, design of leaf spring, coil spring and torsion bar, types of drives-Hotchkiss and torque tube, wheel alignments, wheel wobble, wheel shimmy, pitching, bouncing and rolling, roll centre and roll axis, anti-roll bar, road holding.

Unit-2 Handling Characteristics

8 hours

Handling Characteristics: Steering geometry, Fundamental condition for true Rolling, Ackerman's Steering Gear, Davis Steering gear, Steady state Handling - Neutral steer, Under steer and over steer, Steady state response, Yaw velocity, Lateral Acceleration.

Unit-3 Stability

8 hours

Curvature response & Directional stability, jackknifing in articulated vehicle, loading of automobile chassis due to road irregularities, comfort criteria, load transferred while braking and cornering, equivalent weight of vehicle Unit-4 Ride Characteristics

8 hours

Ride Characteristics: Human response to vibrations, Single degree &Two degree freedom, Free & Forced vibrations, Vehicle Ride Model, Two degree freedom model for sprung & unsprung mass, Two degree freedom model for pitch & bounce.

Unit-5 Vibration Analysis `

8 hours

Vibrations due to road roughness and engine unbalance, Transmissibility of engine mounting, Motion of vehicle on undulating road & Compensated suspension systems.Noise, Vibration and Harshness – Random Processes. Unit-6 stydy and practice of simulation tool like ANSYS

stydy and practice of simulation tool like rings

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Finite Element Methods		8		
Course Code	MCDM5000	6			
Prerequisite	-				
Corequisite	-				
Antirequisite	-				
		L	Т	P	С
		2	1	0	3

Course Objectives:

- 1. To enable the students understand the mathematical and physical principles underlying the Finite Element Method (FEM) as applied to solid mechanics and thermal analysis
- 2. To understand the characteristics of various finite elements.
- 3. To develop finite element equations for simple and complex domains.

Course Outcomes

CO1	Apply the knowledge of mathematics and			
	engineering to solve problems in structural			
	and thermal engineering by approximate			
	and numerical methods.			
CO2	Design a new component or improve the			
	existing components using FEA.			
CO3	Solve the problems in solid mechanics and			
	heat transfer using FEM.			
CO4	Analyze the vibration problems and			
	transient state problems dynamically.			
CO5	Analyze transient heat transfer problems			
	using FEM			
CO6	Use commercial FEA packages like			
	ANSYS and modern CAD/CAE tools for			
	solving real life problems			

Text Book (s)

- 1. Seshu, P.(2010), *Textbook of Finite Element Analysis*, Prentice-Hall of India Pvt. Ltd. ISBN- 978-8-120-32315-5.
- Tirupathi R. Chandrapatla, Ashok D. Belegundu, Introduction to Finite Element in Engineering Prentice-Hall of India Private limited, New Delhi – 110 001. ISBN-<u>978-0-</u> 130-61591-6.

Reference Book (s)

- 1. Bathe, K.J, (1996), *Finite Element Procedures*, Prentice-Hall of India Pvt. Ltd., third Edition. ISBN- 978-0-979-00490-2.
- Zienkiewicz O.C. (1989), *The Finite Element Method*, McGraw-Hill. ISBN- 978-0-070-84072-0.
- Reddy J.N. (1993), *The Finite Element Method*, McGraw-Hill, Third Edition, 1993. ISBN- 978-0-072-46685-0.
- 4. C.S. Krishnamoorthy, (1994), *Finite Element Analysis Theory and Programming*, Tata McGraw-Hill, ISBN- 978-0-074-62210-0.

5. Robert cook, R.D. et. Al., (2004), *Concepts and Applications of Finite Element*

Analysis, John Wiley &sons, ISBN- 978-0-471-35605-9.

Unit-1 Fundamental Concepts 6 hours

Matrix Algebra, Gaussian Elimination, Definition of Tensors and indicial notations, Plane strain-Plane stress hypothesis. Physical problems, Mathematical models, and Finite Element Solutions, Finite Element Analysis as Integral part of Computer Aided Design, Stresses and Equilibrium; Boundary Conditions; Strain-Displacement Relations; Stress –strain relations, Temperature Effects.

Unit-2 Finite Element Formulation from Governing Differential Equations and on Stationary of a Functional

6 hours

Weighted Residual Method for Single Continuous Trail Function and General Weighted Residual Statement, Weak Variational Form of Weighted Residual statement, Comparison of Differential Equation, Weighted Residual and Weak forms, Piece-wise Continuous Trail function solution of weak form, One dimensional bar finite element and one dimensional heat transfer element, Functional of a differential equation forms, Rayleigh-Ritz Method, Piece-wise Continuous trail functions, Finite Element Method and Meaning of Finite Element Equations.

Unit-3 One-Dimensional Finite Element Analysis 9

hours

General form for Total Potential for 1-D, Generic form of finite element equations, Linear Bar Finite element, Quadratic Bar Element- Shape function and Element matrices, Beam element- selection of nodal d.o.f., Determination of Shape functions and Element matrices, 1-D Heat transfer problem.

Unit-4 Unit IV: Two-Dimensional Finite Element Analysis

9 hours

Approximation of Geometry and Field variable: Three-noded triangular element, Four-noded rectangular element, six-noded triangular elements, natural coordinates and coordinate transformation, 2-D elements for structural mechanics, Numerical integration, Incorporation of Boundary Conditions and Solution.

Unit-5 Dynamic Analysis using Finite Elements 6 hours Introduction to vibration problems, Consistent and Lumped mass matrices, Form of finite element equations for vibration problems, Eigenvalue Problems, Transient vibration analysis and unsteady heat transfer problem.

Unit 6- Experimental FEM 3 hours

Simulation methods using ANSYS.

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Combustion Engineering				
Course Code	MAUE500'	MAUE5007			
Prerequisite	Thermodyn Engines, Fu Combustio	uels		(C	
Corequisite	-				
Antirequisite	-				
		L	Т	Р	С
		3	0	0	3

Course Objectives:

The aim of teaching this subject is to make students understand the details of different types of combustion concerned to the automobiles.

Course Outcomes

CO1	Summarize the basic mechanism of combustion process (K3)
CO2	Demonstrate the Combustion of gaseous and vaporized fuels (K3)
CO3	Compare the flames using boundary conditions (K6)
CO4	Demonstrate the various types of combustion of liquid fuels (K3)
CO5	Summarize the basic principles of combustion of solid particles (K3)
CO6	Analyze developments in combustion technology (K4)

Text Book (s) and Reference Book (s)

1. Gary L. Borman& Kenneth W. Ragland, *Combustion Engineering*, McGraw Hill. ISBN- 978-0-070-06567-3.

2. Kenneth K. Kuo, *Principles of Combustion*, John Wiley & Sons. ISBN- 978-0-471-04689-9.

3. S. P. Sharma & Chander Mohan, *Fuels & Combustion*, Tata McGraw Hill ISBN-978-0-070-96627-7.

4. Samir Sarkar, *Fuels & Combustion*, ISBN-978-1-439-82541-9.

Unit-1 Introduction to Combustion process
ent i intoduction to combustion process
6 hours
Scope and history of combustion, Fuels, Thermodynamics of combustion, Chemical
Thermodynamics of combustion, Chemical
kinetics of combustion, rate of reactions, chain
reactions, opposing reactions, consecutive
reactions, competitive reactions, Conservation
equation for multi component reacting systems.
Unit-2 Combustion of gaseous and vaporized
fuels 6 hours
Combustion of gaseous & vaporized fuels, gas -
fired furnace combustion, Premixed charge
engine combustion, Detonation of gaseous
mixture
Unit-3 Diffusion of flames and boundary
conditions
9 hours
Premixed laminar flames, Gaseous diffusion
flames & combustion of a single liquid fuel
droplet, turbulent flames, combustion in two -
phase flame systems, Chemically reacting
boundary layer flows, Ignition
Unit-4 Combustion of liquid fuels
6 hours
Combustion of liquid fuels, spray formation &
droplet behaviour, Oil – fired furnace combustion,
gas turbine spray combustion, direct injection
engine combustion, detonation of liquid – gaseous
mixture, combustion of solid fuels.
Unit-4 Combustion of liquid fuels
6 hours
Stages of solid fuel combustion, solid fuel
combustion process, theory for single coal particle
combustion,
Unit 5 – combustion of solid particles
combustion of carbon sphere with CO burning gas
phase.
Unit -6 Advances in combustion Engineering- 3
hrs
Combustion system design, operational planning
and maintenance

Continuous Assessment Pattern				
Internal	Mid	End	Total	
Assessment	Term	Term	Marks	
(IA)	Test	Test		
	(MTE)	(ETE)		
20	30	50	100	

Name of The	Computational Fluid				
Course	Dynamics				
Course Code	MAUE5008				
Prerequisite	Fluid mecha	anics	5		
Corequisite	-				
Antirequisite	-				
	•	L	Т	Р	С
		3	0	0	3

Course Objectives:

- 1. To understand the computational techniques useful in the analysis of fluid flow and heat transfer
- 2. To expose and train in using commercial CFD software and in writing codes for specific CFD applications.

Course Outcomes

CO1	Understand the governing equations of fluid flow and heat transfer (K2)
CO2	Apply finite difference methods and
	perform stability analysis (K3)
CO3	Solve steady and transient heat
	conduction equations (K3)
CO4	Solve the Navier-stokes equations for
	incompressible flows (K3)
CO5	Use commercial CFD software and in
	writing codes for specific CFD
	applications (K2)
CO6	Solve micro-nano flow simulation
	methods in CFD (
	K3)

Text Book (s)

- S.V. Patankar (1994), Numerical Heat Transfer and Fluid Flow, Hemisphere Series, CRC Press, New York. ISBN-978-0-891-16522-4.
- 2. Y. Jaluria and K.E. Torrance (1986), *Computational Heat Transfer*, Hemisphere Publishing Corp.
- 3. J.D. Anderson, Jr. (1995), *Computational Fluid Dynamics – The Basic with*

Applications, McGraw-Hill. ISBN- 978-0-070-01685-9.

Reference Book (s)

1. K.A. Hoffman (1989), *Computational Fluid Dynamics for Engineering*, Engineering Education System, Austin, Texas. ISBN- 978-0-962-37317-6.

2. K. Muralidhar and T. Sundarajan (1995), *Computatioanl Fluid Flow and Heat Transfer*, Narosa Publishing House, New Delhi. ISBN-<u>978-8-173-19522-8</u>.

3. Fluent 6.1 Manual (2001), Fluent Inc.

Unit-1 Review of the equations governing fluid
flow and heat transfer
6 hours
Introduction to equations governing fluid flow and
heat transfer - Conservation of mass,
conservation of energy - expanded and special
forms of Navier-Stokes equations - Potential
theory - Boundary layer theory - Compressible
flows - Turbulent flows.
Unit-2 Finite Difference Method
6
hours
Introduction to finite differences, difference
equations and discretization – Finite difference
Methods: Explicit, implicit and Crank-Nicholson
- Convergence and stability conditions -
ADI - Boundary conditions - Applications to
steady and transient heat conduction equations.
Unit-3 Heat conduction, convection and diffusion
12 hours
One- and two- dimensional steady & transient
conduction - Steady one-dimensional
convection and diffusion - Solution methodology:
upwind scheme, exponential scheme, hybrid
scheme, power law scheme - Explicit, Implicit,
Crank-Nicolson schemes – Stability criterion.
Unit-4 Solution of Navier-Stokes equations for
incompressible flows
10 hours
Sources of ray X-ray production-properties of d
and x rays - film characteristics - exposure charts
- contrasts - operational characteristics of x ray
equipment – applications.
Unit-5 ANSYS
5hours
Study and simulation for generic fluid flow
problems.

Unit 6 -Advances in CFD 3 hours
Micro nano flow simulation methods

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The	Transmission system design				
Course	lab				
Course Code	MAUE5009				
Prerequisite	-				
Corequisite	-				
Antirequisite	-				
		L	Т	Р	С
		0	0	2	1

Course Objectives:

To orient the students with various aspects of transmission system design and engines through experiments

Course Outcomes

CO1	Assess the transmission systems used in vehicles
CO2	Visualize the suspension and steering
	systems of vehicles
CO3	Integrate the components of brakes and
	clutches

Text Book (s)

Ganesan.V.(2003), *Internal Combustion Engines*, 2nd edition, Tata McGraw Hill Co., ISBN-<u>978-0-070-49457-2</u>

Reference Book (s)

Giles. J.G. (1989), *Vehicle Operation and performance*, IIIiffe Books Ltd., London.

List of Experimments 40 hours

 Testing of Internal combustion engine according to Indian and International standards.
 Performance analysis of two stroke Petrol Engine.

3. Performance analysis of four stroke Petrol Engine.

4. Performance analysis of four stroke Diesel Engine.

5. To Study various engine components, material and design aspects.

6. Performance test on variable compression ratio multi fuel diesel engine.

7. Study of ignition, cooling, lubrication systems

8. Assembling and dismantling of clutch and Transmission systems

9. Assembling and dismantling of automotive

brakes, suspension and steering systems

10. Study of Recent developments in the field of

I.C. Engine and Automobile

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
70	Nil	30	100

Name of The Course	Engine testing and pollution measurement lab		
Course Code	MAUE5010		
Prerequisite	-		
Corequisite	-		
Antirequisite	-		
	L T P C		
	0 0 2 1		

Course Objectives:

To orient the students with various aspects of engine testing and measurement through experiments.

Course Outcomes

CO1	Measure the performance of engine at	
	different load conditions	
CO2	Evaluate to determine the different	
	parameters of engine	
CO3	Test the engine performance of petrol and	
	diesel engines	
CO4	Assess the emission characteristics of	
	internal combustion engines.	

Text Book (s) and Reference Book (s)

1. Giles. J.G. (1989), Vehicle Operation and performance, IIIiffe Books Ltd., London.

2. Crouse.W.H. andAnglin.D.L.(1978), *Motor Vehicle Inspection*, McGraw Hill Book Co. ISBN-0070148139.

3. Ganesan.V.(2003), *Internal Combustion Engines*, 2nd edition, Tata McGraw Hill Co., ISBN-<u>978-0-070-49457-2</u>.

List of	experiments
40 hou	*
1.	Study of Pressure pickups, charge
	amplifier, storage oscilloscope and signal
	analysers used for IC engine testing.
2.	Performance study of petrol and diesel
	engines both at full load and part load
	conditions.
3.	Morse test on petrol and diesel engines.
4.	Determination of compression ratio,
	volumetric efficiency and optimum
	cooling water flow rate in engines.
5.	Heat balance test on an automotive
	engine.
6.	Testing of 2 and 4 wheelers using chassis
	dynamometers.
7.	Study of NDIR Gas Analyser and FID.
8.	Study of

ChemiluminescentNOxanalyzer.

9. Measurement of HC, CO, CO2, O2 using exhaust gas analyzer.

10. Diesel smoke measurement.

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
70		30	100

Name of The Course	Vehicle testing lab				
Course Code	MAUE600	1			
Prerequisite	-				
Corequisite	-				
Antirequisite	-				
		L	Т	Р	С
		0	0	2	1

To orient the students with the following through experiments:

- 1. Testing of vehicles using dynamometer
- 2. Wheel balancing.

Course Outcomes

CO1	Measure the wheel balancing and alignment of vehicles			
CO2	Estimate correct ratios of engine parameters using different diagnostic systems			
CO3	Test the two and four wheeler automobiles using dynamometers and on Road			
CO4	Assess the exhaust gases of internal combustion engines.			
CO5	Apply the basic approach for vehicles pollution test and further lab development for biofuel based engine testing perfromance			

Text Book (s) and Reference Book (s)

- 1. Manufacturer's Manual
- 2. Giles.J.G.(1989), Vehicle Operation and
- performance, lliffe Books Ltd., London.

3. Crouse.W.H. andAnglin.D.L.(1978), *Motor Vehicle Inspection*, McGraw Hill Book Co. ISBN-0070148139.

4. Ganesan.V (2003), *Internal Combustion Engines*, 2nd edition, Tata McGraw Hill Co. ISBN-<u>978-0-</u>070-49457-2.

List of experiments 40 hours 1. Testing of 2 -wheeler using chassis dynamometer. 2. Testing of 4 -wheeler using chassis dynamometer. 3. Road Test of Vehicles for

- a. Brake
- b. Acceleration
- c. Fuel Consumption

4. Engine Analysis using Engine Diagnostic

- System for
- a. Petrol Engine.
- b. Diesel Engine.
- 5. Wheel Balancing and Wheel Alignment
- 6. Study of ChemiluminescentNOxanalyzer.
- 7. Measurement of HC, CO, CO2, O2 using

exhaust gas analyzer.

8. Diesel smoke measurement.

Course Objectives:

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
70	-	30	100

Name of The Course	Automotive engine and chassis component lab			
Course Code	MAUE6002			
Prerequisite	-			
Corequisite	-			
Antirequisite	-			
	L T P C			
	0 0 2 1			

Course Objectives:

To orient the students with the following through experiments:

- 1. The design of chassis components
- 2. The assembly of the chassis.

Course Outcomes

CO1	Plan seat layout of various automobile
CO2	Design the frames of HMV, LMV, Car
	and Two Wheelers using CAD modelling
CO3	Tabulate different parts of automotive
	components
CO4	Apply the basic knowledge in industries
	for Dismantling, study and Assembling of
	different parts of engine and chassis

Text Book (s)

1. Manufacturer's Manual

List of experiments
40 hours
1. Study of Frames used for HMV, LMV, Car
and Two Wheelers.
2. Dismantling and assembling of different types
of engines
3. Dismantling and assembling of
a. Fuel Supply System
b. Steering System,
c. Suspension System,
d. Braking System,
e. Wheels and Tyres
f. Propeller Shaft, Universal Joints and
Differential
4. Study of Driver Seat
5. Brake adjustment and bleeding.

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Dissertation-1				
Course Code	MAUE9998				
Prerequisite	-				
Corequisite	-				
Antirequisite	-				
		L	Τ	Р	С
		-	-	-	5

Course Objectives:

1. To make literature survey for various recently emerging technologies.

2. To select any topic of interest and to review the related literature in detail.

3. To compare and analysis the various topologies for the selected topic of interest.

4. To give more emphasize to the one of best topology and to obtain a network model for it.

5. To analysis the simulation results of the particular topology obtained from various simulation tools.

6. To get realize the hardware implementation of the above topology for which we obtained simulations.

Course Outcomes

CO1	Analyze the relevance of knowledge
	obtained from literature for the research
	work taken up
CO2	Evaluate the recently advanced
	techniques.
CO3	Extract detailed information about the
	topic of interest
CO4	Plan an innovative work in the area of
	interest
CO5	Apply the different simulation tools
	applicable to the area of research

Text Book (s)

Depending upon the area of interest student may choose any text book of relevant field.

Reference Book (s)

As per the chosen area of research.

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
50	Nil	50	100

Conduct an innovative work in the
selected area of research
Apply the different simulation tools
applicable to the area of research
Demonstrate a thorough understanding of
the chosen topic of dissertation

Text Book (s)

Depending upon the area of interest student may choose any text book of relevant field.

Reference Book (s)

As per the chosen area of research.

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
50	Nil	50	100

Name of The Course	Dissertation-II				
Course Code	MAUE99999				
Prerequisite	-				
Corequisite	-				
Antirequisite	-				
		L	Τ	Р	С
		-	-	-	15

Course Objectives:

1. To make literature survey for various recently emerging technologies.

2. To select any topic of interest and to review the related literature in detail.

To compare and analysis the various topologies for the selected topic of interest.
 To give more emphasize to the one of best topology and to obtain a network model for it.

5. To analysis the simulation results of the particular topology obtained from various simulation tools.

6. To get realize the hardware implementation of the above topology for which we obtained simulations.

Course Outcomes

CO1	Design a project relevant to the field of
	study
CO2	Demonstrate expertise in the selected area
	of research

Name of The Course	Simulation of automobile system			
Course Code	MAUE5011			
Prerequisite	-			
Corequisite	-			
Antirequisite	-			
	L T P C			
	3 0 0 3			

Course Objectives:

To provide knowledge about computer simulation of IC Engines Process.

CO1	Summarize the combustion using
	different thermodynamic process
CO2	Simulate SI engine with air as a working
	medium
CO3	Simulate the progressive combustion of
	SI engine
CO4	Simulate two stroke SI engine.
CO5	Simulate engine performance and
	pollution estimation

CO6 Simulate efficient automotive systems

Text Book (s)

1. Ganesan.V., *Computer Simulation of Spark -Ignition Engine Process*, Universities Press (I) Ltd, 1996. ISBN-978-8-173-71015-5.

2. Ganesan.V., *Computer Simulation of Compression* - *Ignition Engine Process*, Universities Press (I) Ltd, 2000. ISBN- 978-8-173-71283-8.

Reference Book (s)

1. Ramoss.A.L. (1992), *Modeling of Internal Combustion Engines Processes*, McGraw Hill Publishing Co..

 Ashley Campbel (1986), *Thermodynamic* analysis of combustion engines, John Wiley & Sons, New York. ISBN- 978-0-471-03751-4.
 Benson.R.S., Whitehouse.N.D.(1979), *Internal Combustion Engines*, Pergamon Press, Oxford. ISBN-<u>978-0-080-22717-7</u>.

Unit-1 Introduction

6 hours

Introduction - Heat of reaction - Measurement of URP - Measurement of HRP - Adiabatic flame temperature:Complete combustion in C/H/O/N Systems, Constant volume adiabatic combustion, constant pressure adiabatic combustion. Calculation of adiabatic flame temperature -Isentropic changes of state.

Unit-2 SI ENGINE SIMULATION WITH AIR AS WORKING MEDIUM

6 hours

SI Engine Simulation With Air As Working Medium Deviation between actual and ideal cycle - Problems, SI engine simulation with adiabatic combustion, temperature drop due to fuel vaporisation, full throttle operation efficiency calculation, part-throttle operation, super charged operation.

Unit-3 PROGRESSIVE COMBUSTION

9 hours

Progressive Combustion SI Engines simulation with progressive combustion with gas exchange process, Heat transfer process, friction calculation, compression of simulated values, validation of the computer code, engine performance simulation, pressure crank angle diagram and other engine performance. Unit-4 SIMULATION OF 2-STROKE SI ENGINE

9 hours

Simulation Of 2-Stroke SI Engine Introduction – Air fuel mixture formation – Chemically correct mixture combustion – Scavenging – Exhaust and mixing processes in a two stroke engine. Diesel Engine Simulation Multi zone model for combustion, UNIT5 – engine performance

different heat transfer models, equilibrium calculations, simulation of engine performance and simulation for pollution estimation. UNIT6- Advances in vehicle engineering Efficient modelling of automotive systems

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The	Automobile Air				
Course	Conditioning				
Course Code	MAUE501	MAUE5012			
Prerequisite	-				
Corequisite	-				
Antirequisite	-				
		L	Т	P	С
		3	0	0	3

Course Objectives:

The objective of Automobile Air Conditioning is to

- 1. make students familiar with the different refrigeration systems, air-conditioning systems, eco-friendly refrigerants used.
- 2. acquaint the students with the load analysis, air distribution and temperature control of an automobile.

CO1	Summarize the basic principles of refrigeration and air conditioning (K1)
CO2	Identify the characteristics required for selection of refrigerants (K2)
CO3	Demonstrate the basic layout and components of air conditioning system (K3)
CO4	Analyze the load and air distribution in refrigeration and air conditioning systems (K4)
CO5	Illustrate the techniques of temperature control, maintenance and servicing of air conditioning system (K3)

CO6	Apply the principles of multizone	air-
	conditioning systems to optim	
	microclimate(K3)	

Text Book (s) and Reference Book (s)

2. Paul Lung, Automotive Air Conditioning, C.B.S. Publisher & Distributor, Delhi.

3. N.C. Harris (1974), *Modern Air Conditioning*, McGraw-Hill; 2nd edition, ISBN- 978-0-070-26811-1.

4. ASHRAE Handbook - 1985 Fundamentals

5. William H. Crouse & Donald L. Anglin (1990), *Automotive Air Conditioning*, McGraw Hill, Inc. ISBN-978-0-070-14591-7.

7. Paul Weisler (1990), *Automotive Air Conditioning*, Reston Publishing Co. Inc. ISBN- 978-0-835-90261-8.

Unit-1 Refrigeration

6 hours

Refrigeration : Introduction, methods of refrigeration, vapour compression refrigeration system, vapour absorption refrigeration system, applications of refrigeration & air conditioning, Automobile air conditioning, air conditioning for passengers, isolated vehicles, transport vehicles, applications related with very low temperatures. Unit-2 Refrigerant

6 hours

Refrigerant: Classification, properties, selection criteria, commonly used refrigerants, alternative refrigerants, eco-friendly refrigerants, applications of refrigerants, refrigerants used in automobile air conditioning.

Unit-3 Automobile Air Conditioning Systems

9 hours

Air Conditioning Systems: Classification, layouts, central / unitary air conditioning systems, components like compressors, evaporators, condensers, expansion devices, fan blowers, heating systems, Automotive heaters, Types, Heater Systems, Air conditioning protection, Engine protection.

Unit-4 Load Analysis and air distribution systems 9 hours

Load Analysis: Outside & inside design consideration, factors forming the load on refrigeration & air conditioning systems, cooling & heating load calculations, load calculations for 1.Michel Information Services (1989), *Mitchell Automotive Heating and Air Conditioning Systems*, Prentice Hall. ISBN-978-0-135-86223-0.

automobiles, effect of air conditioning load on engine performance, Air Distribution Systems : Distribution duct system, sizing, supply / return ducts, type of grills, diffusers, ventilation, air noise level, layout of duct systems for automobiles and their impact on load calculations. Unit-5 Temperature control and Air conditioning

Unit-5 Temperature control and Air conditioning services 9

hours

Air Routine & Temperature Control : Objectives - evaporator care air glow, through the dash recirculating unit, automatic temperature control, controlling flow, control of air handling systems. Air Conditioning Service : Air conditioner maintenance & service - servicing heater system, removing & replacing components, trouble shooting of air conditioning system, compressor service, methods of dehydration, charging & testing.

Unit-6 Recent trends in Automotive airconditioning Multizone air-conditioning, trans critical

refrigeration system

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Transport Management				
Course Code	MAUE501	MAUE5013			
Prerequisite	-				
Corequisite	-				
Antirequisite	-				
	L T P C				
	3 0 0 3				

Course Objectives:

The objective of transport management subject is to make students familiar with the notion of transport management, vehicle maintenance, supply management, scheduling and motor laws.

CO1	Plan the manpower in different sections of
	transportation
CO2	Develop the schedule for maintenance of
	automobiles
CO3	Calculate the cost of inventory in
	transportation using software
CO4	Summarize fare structure, schedules and
	sections of motor vehicle act
CO5	Summarize the safety regulations of
	service vehicle
CO6	Explore intelligent traffic management
	systems

Text Book (s) and Reference Book (s)

1. John Dolce, *Fleet Management*, McGraw-Hill Co. 1984 ISBN- 978-0-070-17410-8.

2. Goverment Publication, *The Motor vehicle Act*, 1989.

3. Rex W Faulks (1987), *Bus and Coach Operation*, Butterworth. ISBN-978-0-408-02810-3.

4. Kitchin.L.D.(1992), *Bus operation*, 3rd Edition, llliffe and Sons Ltd., London.

5. Kadiyali.L.R., *Traffic engineering and Transport Planning*, Khanna Publishers, ISBN- 978-8-174-09220-5.

Unit-1 Organisation and Management

6 hours

Forms of Ownership – principle of Transport Management – Staff administration – Recruitment and Training –welfare – health and safety. Basic principles of supervising. Organizing time and people. Driver and mechanic hiring - Driver checklist - Lists for driver and mechanic - Trip leasing - Vehicle operation and types of operations Unit-2 Vehicle Maintenance

6 hours

Scheduled and unscheduled maintenance -Planning and scope - Evaluation of PMI programme – Work scheduling - Overtime -Breakdown analysis - Control of repair backlogs - Cost of options.

Unit-3 Vehicle Parts, Supply Management and Budget 9 hours

Cost of inventory - Balancing inventory cost against downtime - Parts control - Bin tag systems - Time management - Time record keeping -Budget activity - Capital expenditures -Classification of vehicle expenses - Fleet management and data processing - Data processing systems - Software. Model - Computer controlling of fleet activity - Energy management. AE - 94 07-08 - SRM - E&T. Unit-4 Fare structure and motor vehicle Act 9 hours Scheduling And Fare Structure Route planning -Scheduling of transport vehicles - Preparation of timetable – preparation of vehicle and crew schedule - Costs, fare structure - Fare concessions - Methods of fare collection - Preparation of fare table.Motor Vehicle ActSchedules and sections -Registration of motor vehicles - Licensing of drivers and conductors - Control of permits -. Unit 5 Safety during transportation Limits of speed - traffic signs - Constructional regulations - Description of goods carrier, delivery van, tanker, tipper, municipal, fire fighting and break down service vehicle Unit 6 – Advances in traffic management Intelligent traffic management systems

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Tractor and Farm Equipment				
Course Code	MAUE5015				
Prerequisite	-				
Corequisite	-				
Antirequisite	-				
		L	Т	Р	С
		3	0	0	3

Course Objectives:

This subject acquaints students with the design and control of tractors, working of engines and farm equipments

CO1	Classify various types of tractors, their
	components and safety aspects
CO2	Summarize the engine design and
	operation of tractors
CO3	Demonstrate the working principle of
	cooling and lubrication systems of tractor

CO4	Classify different attachment of tractors
	used for farming purpose.
CO5	Classify modern farm equipment
CO6	Apply design principles for a requirement
	of modern farm equipment

Text Book (s) and Reference Book (s)

1.Rodichev and G.Rodicheva(1987), *Tractor and Automobiles*, MIR Publishers. ISBN- 978-5-030-00855-4.

2. Kolchin. A., and V.Demidov (1972), *Design of Automotive engines for tractor*, MIR Publishers.

Unit-1 General Introduction

10 hours

General Design of Tractors : Classification of Tractors-Main components of Tractor-Safety Rules.

Unit-2 Tractor control

10 hours

Control of the Tractor and Fundamentals of Engine Operation: Tractor controls and the starting of the tractor engines-Basic notions and definition-Engine cycles-Operation of multi cylinder engines-General engine design - Basic engine performance characteristics.

Unit-3 Working of Automobile Engines 9 hours

Engine Frame Work and Valve Mechanism of Tractor: Cylinder and pistons-Connecting rods and crankshafts Engine balancing – Construction and operation of the valve mechanism-Valve mechanism components – Valve mechanism troubles. Cooling system, Lubrication System and Fuel System of a Tractor: Cooling system – Classification, Liquid cooling system – Components, Lubricating system servicing and troubles – Air cleaner and turbo charger – Fuel tanks and filters –Fuel pumps.

Unit-4 Farm Equipments

9 hours

Working attachment of tractors-Farm equipment – Classification – Auxiliaryequipment – Trailers and body tipping mechanism.

Unit 5 modern farm equipments I row weeder, harvester

I TOW WE

Unit 6

Case study of a design of modern farm requirement

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Alternative Fuels and Power Systems				
Course Code	MAUE5017				
Prerequisite	-				
Corequisite	-				
Antirequisite	-				
		L	Т	Р	С
		3	0	0	3

Course Objectives:

- 1. To introduce the students to different kinds of alternative fuels.
- 2. To understand the properties and applications of alternative fuels.

Course Outcomes

CO1	Identify the need for alternative fuels and
	their sources.
CO2	Demonstrate the performance
	characteristics of alcohol fuels in SI and
	CI engines.
CO3	Investigate the properties, engine
	performance and emission characterstics
	of hydrogen, biogas and vegetable oil
	fuels.
CO4	Demonstrate the layout of electric, solar
	powered vehicles
CO5	Demonstrate the layout of hybrid vehicles
CO6	Investigate the principles of fuel cell
	vehicles

Text Book (s) and Reference Book (s)

1. Osamu Hirao and Richard K. Pefley (1988), *Present and Future Automotive Fuels*, John Wiley

and Sons. ISBN-978-0-471-80259-4.

2. Keith Owen and Trevor Eoley (1990),

Automotive Fuels Handbook, SAE Publications.

3. Richard L.Bechtold (1997), *Automotive Fuels Guide Book*, SAE Publications. ISBN- 978-0-7680-0052-8.

	20 30	50	1(0
Unit-1 Introduction	L			
10 hours				
Estimation of petroleum reserves - Need for alternative fuels - Availability and Suitability to	Name of The Course S	Special Purpos	se Veh	ni
Piston Engines, Concept of conventional fuels,		MAUE5018		-
potential alternative fuels - Ethanol, Methanol,	Prerequisite -			_
DEE/DME - Hydrogen, LPG, Natural gas,	Corequisite -			
producer gas, Bio gas and Vegetable oils - Use in	Antirequisite -			
I.C. Engines-Merits and Demerits of various		L	Τ	F
fuels.		3	0	0
Unit-2 ALCOHOL FUELS		•		
101	Course Objectives:			
10 hours	The objective of teach	ing special put	rpose v	16
Properties as engine fuels - Performance in S.I.Engines - Alcohol & Gasoline blends -	to make students fam			
Flexible Fuel Vehicle -Reformed alcohols - Use	special purpose vehicl			
in C.I. Engines - Emulsions - Dual fuel systems -	wheel tyres and truck		11	
Spark assisted diesel engines $-AE - 60\ 07-08 -$	-			
SRM – E&T	Course Outcomes			
Surface ignition engines - Ignition accelerators -	CO1 Classify the s	pecial purpose	vehicl	e
Combustion and emission characteristics in	on listed para			
engines – emissioncharacteristics.	CO2 Explain work	ing principles	and de	35
Unit-3 GASEOUS FUELS and VEGETABLE	consideration	of different ea	arth mo	0
OILS	machines.			
9 hours	CO3 Summarize th	he elements an	d work	d
Hydrogen - Properties - Use in CI Engines - Use	farm tractor.			
in SI Engines - Storage methods - Safety	CO4 Summarize	elements	and	
precautions. Producer gas and biogas - Raw		f mobile cranes		
materials - Gasification - Properties - Cleaning		tric, hybrid		
up the gas - Use in SI and CI engines, LPG &		special purpos		
Natural gas - Properties - Use in SI and CI		design consi		D
Engines.	modern speci	al purpose veh	ncles	
Various vegetable oils for engines – Properties -				
Esterification - Performance in engines - Performance and emission Characteristics.	Text Book (s) and Ref		. ,	
Unit-4 ELECTRIC AND SOLAR POWERED	1. Y. Pokras and M	•		
VEHICLES	Equipment Operatio	on & Main	tenanc	e
9 hours	Moscow.		M	_
Layout of an electric vehicle - Advantage and	2. A. Astskhov, <i>Truck</i>			
limitations - Specifications - System component.	3. E.G. Poninson, <i>Mot</i> 4. N. Rudenko, <i>Materi</i>			
Electronic control system Solar powered	Publishers. ISBN-978			e
vehicles.	5. Sheldon, R.Shack			
Unit5 hybrid vehicles				
High energy and power density batteries - Hybrid	Vehicles, New York. I	1910-9/8-U-8	91-90	J
vehicle				
Unit 6	Unit-1 Classification	of Special Pu	rpose '	V
Fuel cell vehicle		. Si Speciai i u	-P050	1
	8 hours			
Continuous Assessment Pattern	Classification of Sno	aial Duma a A	7.1.1.1.	-

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	

20	30	50	100

Name of The Course	Special Purpose Vehicles				
Course Code	MAUE501	MAUE5018			
Prerequisite	-				
Corequisite	-				
Antirequisite	-				
		L	Τ	Р	С
		3	0	0	3

vehicles is fication of plications,

CO1	Classify the special purpose vehicles based	
	on listed parameters	
CO2	Explain working principles and design	
	consideration of different earth moving	
	machines.	
CO3	Summarize the elements and working of a	
	farm tractor.	
CO4	Summarize elements and design	
	parameters of mobile cranes.	
CO5	Apply electric, hybrid solar energy	
	principles to special purpose vehicles	
CO6	Summarize design considerations for	
	modern special purpose vehicles	

nstruction e, MIR,

cow.

loscow.

nent, MIR.

Electric 085-0.

Vehicles

Classifi	cation of Specia	al Purpose	Vehicles: b	ased
on appl	ications, wheel	types & Tr	uck type.	
Unit-2	Construction	working	principle	and
	working	-		
	10 hours			

•	of working principles & design rations: of different systems involved like
power	•
	ion, electrical, braking, steering,
pneuma	tic & hydraulic control circuits.
Constru	ctional & working features: of different
types of	earth moving machinery such as Tippers,
shovels,	loaders, Excavators, Dumpers, Dozers,
Fork Lit	ft truck, Road rollers.
Unit-3 H	Farm Tractor
	5hours
	cactor: Layout, Load distribution, Engine,
	ission & Drive line, Steering, Braking
	Wheels & Tyres, Hydraulic system,
	ry Systems, Draw bar, PTO Shaft.
	nt types of Implements, accessories and
attachm	ents. Tractor trolley.
Unit-4 N	Mobile Cranes
	6 hours
	Cranes : Basic characteristics of truck
	stability & design features, control
•	& safety devices. Tracked Vehicles,
	ted Vehicles, Multi-axle Vehicles, fifth
	echanism.Semi trailer& Prime mover
	k electrical systems. Dead Axles.
Unit 5-	
	Purpose Electric Vehicles, Solar Vehicles
	orid Vehicles.
	- Design considerations
	architecture and parameters of design
	rations in modern fuel special vehicles

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Safety, Health and Enviornment				
Course Code	MAUE5019				
Prerequisite	-				
Corequisite	-				
Antirequisite	-				
		L	Т	Р	С
		3	0	0	3

Course Objectives:

The course is intended to

1. Introduce the basics of Air pollution.

2. Understand the measures and technologies

required to control the air pollution.

Course Outcomes

CO1	List the Different type of hazards and Vulnerability models		
CO2	Identify fire and explosion model for		
	Automotive safety Analysis		
CO3	Examine different Air Pollutants		
CO4	Investigate wind circulation stability		
	conditions and Maximum Mixing Depths		
CO5	Summarize air pollution control		
	technologies		
CO6	To apply the design principles of Air		
	Pollution Control Tool		

Text Book (s) and Reference Book (s)

1. M N Rao & H V N Rao (2000), *Air pollution*, Tata McGraw Hill Publishing Ltd. ISBN- 978-0-074-51871-7.

Unit-1 Safety

8 hours

Concepts of safety – Hazard classification chemical, physical, mechanical, ergonomics, biological and noise hazards – Hazards from utilities like air, water, steam. Hazard identification - Safety Audits - Checklists - What if Analysis – HAZAN – HAZOP - Vulnerability models - Event tree and Fault tree Analysis - Past accident analysis - Flixborough - Mexico - Bhopal - Madras - Vizag accident analysis. Unit-2 Automotive safety Analysis <u>8 hours</u> Introduction to Consequence Analysis - Fire and Explosion models: Radiation - Tank on fire -

Flame length – Risk analysis - Radiation intensity calculation and its effect to plant, people & Property - UCVCE - Explosion due to -Deflatration - Detonation - TNT, TNO & DSM model - Over pressure - Methods for determining consequences effects - Effect of fire- Effects of

explosion - Risk contour - Flash fire - Jet fire -Pool fire - BLEVE - Fire ball. Unit-3 Air Pollution Monitoring

9 hours

Collection of Gaseous Air Pollutants, Collection of Particulate Pollutants, Measurement of SO₂, Nox, CO, Oxidants and Ozone

Unit-4 Meteorology	&	Dispersion	of	pollutants
--------------------	---	------------	----	------------

9 hours

Wind Circulation, Lapse Rate, Stability Conditions, Maximum Mixing Depths, Plume Rise & dispersion

Unit-5 Emission Control Systems

9 hours

Air pollution control technologies for particulates and gaseous contaminants, Gravity settlers, Electrostatic precipitators, Bag Filters, Scrubbers, Cyclone, control for moving sources.

Unit-6

Inspection and maintenance of in service vehicles, GAPF emission inventory preparation tool, Air Pollution control model using machine learning and IOT techniques, Canada's pollution control policy tool

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Hydraulics and Pneumatics			
Course Code	MAUE5020			
Prerequisite	-			
Corequisite	-			
Antirequisite	-			
	L T P C			
	3 0 0 3			

Course Objectives:

This subject deals with the hydraulic and pneumatic aspects which helps students to understand their applications in automobile engineering.

Course Outcomes

CO1	Explain the fluid power in hydraulic and
	pneumatic systems
CO2	Summarize the different elements of
	hydraulic systems and their working
CO3	Summarize the different elements of
	Pneumatic systems and their working
CO4	Apply Hydraulic and Pneumatic principle in different automotive application

CO5	Analyze the principles of sensors and
	applications in Hydraulic and Pneumatic
	circuits
CO6	Analyze the recent advancements in
	hydraulics and pneumatics in application
	to automobile engineering

Text Book (s) and Reference Book (s)

1.AnthonyEspisito (2003), *Fluid Power with Application*, Pearson Education (Singapore) Pte.Ltd, Delhi, India, Fifth Edition, First Indian Reprint, ISBN- <u>978-8-177-58580-3</u>.

2. Werner Deppert and Kurt Stoll (1975), *Pneumatic Controls : An introduction to principles*, Vogel-Druck Wurzburg, Germany. ISBN-978-3-802-30102-5.

3. Pippenger, J.J (2002), *Industrial Hydraulic & Pneumatics*, McGraw Hill.

4. Anderson B W, *The analysis and design of pneumatic systems*, John Wiley.5. A. B. Goodwin, *Fluid Power Systems*, Mc

Millan Pub. Co. ISBN- <u>978-0-333-19368-6</u>.

Unit-1 Introduction to fluid power

10 hours

Introduction to fluid power – Classification, application in various fluids of engineering, various hydraulic and pneumatic ISO/JIC Symbols, transmission of power at static and dynamic states, Types of hydraulic fluids and their properties, effect of temperature on fluids.

Unit-2 Elements and working of hydraulic systems

10 hours

Different elements of hydraulic system, constructional and working details of each component; Pumps and motors, characteristics, Maintenance of hydraulic system, control valves, actuators and mountings, filter, regulator and lubricator. Selection criteria for cylinders, valves, pipes etc.

Unit-3 Pneumatic Systems

9 hours

Pneumatic Systems : Application of pneumatics, physical principles, basic requirement of pneumatic system. Comparison with hydraulic systems. Elements of Pneumatics, Air compressors, Pneumatic control valves. Pneumatic actuators - types and the mountings, Air motors – types, Pneumatic circuits – Basic pneumatic circuit, impulse operation, speed control, pneumatic motor circuit, sequencing of

motion, time delay circuits and their
applications.Pneumatic servo-system for linear
and rotary motion.
Unit-4 Automotive Applications of pneumatic
systems
9 hours
Typical Automotive Applications: Hydraulic
tipping mechanism, power steering, fork lift
hydraulic gear, hydro-pneumatic suspension.

Unit 5- Maintenance of hydraulic & pneumatic Maintenance and troubleshooting of hydraulic & pneumatic circuits. Introduction to fluidics-study of simple logic gates, turbulence, amplifiers, pneumatic sensors and applications

Unit 6 – Case study

Case study in adaptation of hydraulic & pneumaticin automotive systems

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Vehicle Aerodynamics				
Course Code	MAUE502	1			
Prerequisite	-				
Corequisite	-				
Antirequisite	-				
		L	Τ	Р	С
		3	0	0	3

Course Objectives:

- 1. To analyze the stability, safety and comfort of the vehicles
- 2. To understand wind tunnels and testing techniques
- 3. To apply CFD for aerodynamic design of vehicle

Course Outcomes

CO1	Demonstrate aerodynamic drag and forces
	in a car body
CO2	Identify the parameters of vehicle body
	related to car stability, safety and comfort.
CO3	Summarize the wind tunnels and testing
	methodology.

CO4	Model fluid flow equations around a					
	vehicle body					
CO5	Construct the aerodynamic models for					
	cars, buses and trucks.					
CO6	Analyze the analytical method for inverse					
	Analyze the analytical method for inverse heat transfer problem in short-duration					
	wind tunnels					

Text Book (s)

1. DaleH. Beterfield et al (2001), *Total Quality Management*, Pearson Education Asia. ISBN-978-8-131-76496-1.

Reference Book (s)

- John Bank J.E. (1993), *Total Quality Management*, Prentice Hall, India, ISBN- 978-0-132-84902-9.
- Samuel K.Ho (2002), TQM- AN Integrated approach, Kogan Page India Pvt. Ltd, ISBN-978-0-749-41561-7.
- 3. Jill A.Swift, Joel E. Ross and Vincent K. Omachonn (1998) *Principles of Total Quality*, St.Lucie Press, US, 1998. ISBN-<u>978-1-574-44094-2</u>.

Unit-1 Fundamentals of Aerodynamics

6 hours

Scope – Development trends – Flow phenomena related to vehicles – External and Internal flow problems – Performance of cars and light vans – Resistance to vehicle motion – Drag – Types of drag – Flow field around car – Aerodynamic development of cars – Optimization of car bodies for low drag.

Unit-2 Stability, Safety and Comfort

6 hours

The origin of forces and moments – effects – vehicle dynamics under side wind – Force and Moment coefficients – Safety limit – dirt accumulation on vehicle - wind noise – Air flow around individual components – High performance vehicles – Very log drag cars – Design alternatives – High efficiency radiator arrangement – Development and simulation methods.

Unit-3 Wind Tunnels and Test Techniques

12 hours

Principles of wind technology – Limitations of simulation – Scale models – Existing automobile wind tunnels – Climatic tunnels – Measuring

equipment and transducers. Pressure measurement
- velocity measurements - Flow visualization
techniques - Road testing methods - Wind noise
measurements.
Unit-4 Introduction to CFD
7 hours
Methods to solve Navier-Stokes equation -
Forces acting in a fluid element –
Compressibility effects in a flow field - Inviscid
flow - Governing equations - Irrotation flow field
and consequences - Potential flows - Boundary
layer methods - Numerical modelling of fluid
flow around vehicle body.
Unit-5 Aerodynamic Design
6 hours
Development and simulation methods -cars,
buses, trucks studies.
Unit $6 - 3$ hrs

Analysis of inverse heat transfer problem in shortduration wind tunnels

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Automotive Safety						
Course Code	MAUE5	022					
Prerequisite	-						
Corequisite	-						
Antirequisite	-						
		L	Т	Р	С		
		3	0	0	3		

Course Objectives:

The concept of introducing this subject is to make students familiar with the aspect of vehicle safety and to introduce them with the notion of bus body and commercial vehicle.

Course Outcomes

CO1	Classify different aspects of saftey in automobile					
CO2	Categories the suitable active & passive systems					
CO3	Applying the knowledge for selecting the suitable safety equipments for designing a vehicle					

CO4	Design a collision warning and avoidance					
	system					
CO5	Creating the advanced system for increasing the safety in special purpose vehicles					
CO6	Understanding the future of automotive safety: autonomous vehicle					

Text Book (s) and Reference Book (s)

1. Hucho, W.H. (1997), *Aerodynamics of Road vehicles*, Butterworths Co. Ltd. ISBN- 978-0-750-61267-8.

2. J. Powloski (1969), *Vehicle Body Engineering*, Business books limited, London. ISBN- 978-0-220-68916-2.

3. Ronald. K. Jurgen (1999), *Automotive Electronics Handbook*, Second edition- McGraw-Hill

Inc. ISBN- 978-0-070-34453-2.

4. ARAI Safety standards.

Unit-1 Introduction 6 hours

The concept of vehicle safety; Need of safety; active safety: driving safety; conditional safety; perceptibility safety; operating safety- passive safety: exterior safety, interior safety, deformation behaviour of vehicle body.

Unit-2 Vehicle safety

9 hours

Regulations, automatic seat belt Tightener system; Collapsible steering column; Tiltable steering wheel; Electronic system for activating air bags; Bumper design for safety; antiskid brakingsystem; Speed control devices; Causes of rear end collision; Frontal object detection; Rear vehicle object detection system; Object detection system with braking system interactions

Unit-3 SAFETY EQUIPMENTS

9 hours

Seat belt, regulations, automatic seat belt tightener system, collapsible steering column, tiltable steering wheel, air bags, electronic system for activating air bags, bumper design for safety. Unit-4 COLLISION WARNING AND

Unit-4 COLLISION WARNING ANI AVOIDANCE

8 hours

Collision warning system, causes of rear end collision, frontal object detection, rear vehicle object detection system, object detection system with braking system interactions.

Unit-5 COMFORT AND CONVENIENCE SYSTEM 8 hours Steering and mirror adjustment, central locking system, Garage door opening system, tyre pressure control system, rain sensor system, environment information system

Unit-6

Trust in Autonomous Vehicles, Simulator Study, Individual Driver Characteristics, Educating the Operator, transfer of control to operator, benefits of automation, ADS

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Program: M.Tech in CAD/CAM

Scheme: 2020-2021

Vision

To be known as a premier department in mechanical engineering by synergizing teaching, learning and research to produce competent Mechanical Engineers with an exposure to interdisciplinary engineering knowledge.

Mission

MD1: Create an effective foundation in the field of production, design, thermal, industrial and automation engineering by imparting quality education.

MD2: Conduct interdisciplinary research leading to the delivery of innovative technologies through Problem and Research Based Learning.

MD3: Provide relevant industrial experience that instills the problem solving approach; integrate the product design to manufacturing life cycle management.

MD4: Prepare students for careers in academia and various industrial organization related to mechanical and allied engineering.

Program Educational Objectives

PEO1: Graduates of Mechanical Engineering shall be engineering professionals and innovators in core engineering, service industries or pursue higher studies.

PEO2: Graduates of Mechanical Engineering shall be competent in latest technologies by exploiting automation and smart manufacturing tools to address various industry 4.0 problems.

PEO3: Graduates of Mechanical Engineering shall leverage their imbibed skill through continuous working on technologies like drone and additive manufacturing knowledge to transform the society.

Program Outcomes

- 1. Engineering Knowledge : Apply the knowledge of Mathematics, Science, and Engineering fundamentals, and an engineering specialization to solution of complex engineering problems.
- 2. Problem analysis : Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
- 3. Design/development of solutions : Design of solutions for complex engineering problems and design of system components or processes that meet the specified needs with appropriate considerations of public health and safety, and cultural, societal, and environmental considerations.
- 4. Conduct investigations of complex problems : Use research based methods including design of experiments, analysis and interpretation of data and synthesis of information leading to logical conclusions.
- 5. Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling complex engineering activities with an understanding of limitations.
- 1. The engineer and society : Apply reasoning within the contextual knowledge to access societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 2. Environment and sustainability : Understand the impact of the professional engineering solutions in the societal and environmental contexts, and demonstrate the knowledge of, and the need for sustainable developments.
- 3. Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.
- 4. Individual and team work : Function effectively as an individual independently and as a member or leader in diverse teams, and in multidisciplinary settings.
- 5. Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large such give and receive clear instructions.
- 6. Project management and finance : Demonstrate knowledge and understanding of engineering management principles and apply those to one's own work as a member and leader of a team to manage projects in multidisciplinary environments.
- 7. Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Semester 1 S1. Assessment Pattern Course Code Name of the Course L Т Р С MTE ETE No IA Advanced Numerical and 3 1 0 4 20 1 MATH5001 50 100 **Statistical Methods** 2 Advanced Strength of Materials 3 0 0 3 20 50 100 MCDM5001 Advanced Materials and 3 MCDM5002 3 0 0 3 20 50 100 Processing Advanced Manufacturing 3 3 4 MCDM5003 0 0 20 50 100 Technology Product Design and Life Cycle 3 5 0 0 3 MCDM5004 20 50 100 Management Advanced Computer Aided Design 3 6 MCDM5005 0 0 3 20 50 100 Total 18 0 19 1 Semester II S1 Assessment Pattern Course Codee Name of the Course Т Р С MTE No L ETE IA Professional and Communication 0 0 4 70 1 CENG5001 2 30 _ Skills Finite Element Methods 2 3 50 2 MCDM5006 0 20 100 1 **Computer Integrated** 3 3 3 MCDM5007 0 0 20 50 100 Manufacturing Advanced Vibration Engg. 3 3 20 50 4 MCDM5008 0 0 100 5 Computer Aided Process Planning 0 0 2 1 70 _ 30 MCDM5009 6 Elective 1 3 0 0 3 20 50 100 7 Elective 2 3 3 0 0 20 100 50 8 0 2 70 30 Data Analysis 0 1 _ 14 8 19 Total 1 Semester III Sl Assessment Pattern Course Code Name of the Course No С L Т Р IA MTE ETE Advanced Computer Aided Design 0 0 4 2 MCDM6001 70 _ 30 1 and Manufacturing Lab 2 MCDM9998 Dissertation-1 _ 5 50 _ 50 _ _ Elective 3 3 3 3 0 0 20 50 100 4 3 3 Elective 4 0 0 20 50 100 5 Elective 5 3 0 0 3 20 50 100 9 Total 0 6 16 Semester IV **S**1 Assessment Pattern Course Code Name of the Course No С IA MTE ETE L Т Р MCDM9999 1 **Dissertation-2** _ _ _ 15 50 _ 50

Curriculum

List of Electives

S1	Course Code	Name of the Electives					Assess	sment Pa	ttern
No	Course Coue	Ivallie of the Electives		Т	Р	С	IA	MTE	ETE
1	MCDM5010	Rapid Prototyping	3	0	0	3	20	50	100
2	MCDM5011	Tool Engineering	3	0	0	3	20	50	100
3	MCDM5012	Advanced Computer Aided					20	50	100
5	WICDWIJ012	Manufacturing	3	0	0	3	20	50	100
4	MCDM5013	Performance Modelling and					20	50	100
4	MCDWI3013	Analysis of Manufacturing Systems	3	0	0	3	20	50	100
5	MCDM5014	Design for Manufacturing	2	1	0	3	20	50	100
6	MCDM5015	Quality Management	2	1	0	3	20	50	100
7	MCDM5016	Reliability Engineering	3	0	0	3	20	50	100
8	MCDM5017	Metrology and Non Destructive					20	50	100
	WICDWIJ017	Testing	3	0	0	3	20	50	100
9	MCDM5018	Design and Analysis of					20	50	100
	WICDWIJ018	Experiments	3	0	0	3	20	50	100
10	MCDM5019	Research Methodology	3	0	0	3	20	50	100
11	MCDM5020	Optimization Methods	2	1	0	3	20	50	100

Detailed Syllabus

Name of The Course	Advanced Numerical and Statistical Methods						
Course Code	MATH5001						
Prerequisite							
Corequisite							
Antirequisite							
		L	Т	Р	С		
		3	1	0	4		

Course Objectives:

With growing demand of ever computational techniques, scope of numerical methods is penetrating aggressively into major important fields and including Science, Engineering & Technology, Medical, Space Science, Economics, Business and Environment. The objective is to achieve knowledge and understanding of numerical methods and to apply appropriate methods to model and solve problems where ordinary analytical methods fail.

Statistical methods are used in manufacturing, development of food product, computer software, energy sources, pharmaceuticals and many other areas. The objective of statistics and probability is to analyze data to make scientific judgments in the face of uncertainty and variation for the improvement of the desired quality.

Course Outcomes

CO1	Apply various numerical methods to					
	solve system of linear and non-linear					
	equations.					
CO2	Apply standard interpolation methods to					
	interpolate required/ missing value.					
CO3	Apply appropriate methods of numerical					
	differentiation /integration to solve related					
	problems.					
CO4	Solve ordinary differential equations and					
	partial differential equations using					
	appropriate numerical methods.					
CO5	Identify the type of distributions and					
	apply a suitable test to draw the					
	conclusion.					

Continuous Assessment Pattern

Internal Assessment	Mid Term Exam	End Term	Total Marks
(IA)	(MTE)	Exam	IVIAI KS
		(ETE)	
20	30	50	100

Course Content:

Unit I: System of Linear Equations

System of Linear Equations: Direct Methods-Gauss elimination – Pivoting, Partial and Total Pivoting, Triangular factorization method using Crout LU decomposition, Cholesky method, Iterative Method- Gauss- Seidel and Jacobi method, ill conditioned matrix System of Nonlinear equation- Newton Raphson and Modified Newton Raphson Method. Iterative methods Unit II: Interpolation and Approximation

8

Interpolation and Approximation: Lagrange, Spline and Hermite interpolation, Approximations, Error of approximation, Norms for discrete and continuous data, Least square approximation.

Unit III: Numerical Integration: 6 Hours

Numerical Integration: Newton Cotes closed Quadrature, Gauss Legendre Quadrature, Multiple Integration An introduction to Modal and Phrasal verbs; Expansion; Word formation; Technical Resume; Company Profile Presentation; Interview Skills

Unit IV: Numerical Solution of Differential Equations 9 Hours

Numerical Solution of Differential Equations: Finite Difference Schemes, Numerical solution of Ordinary differential equation using Modified Euler's method, Runge-Kutta method of 2nd, 3rd and 4th orders, Predictor- Corrector method, Solution of Laplace's and Poisson's equations by Liebman's method, Solution of one dimensional time dependent heat flow.

Unit V: Probability and statistics

9 Hours

Probability and statistics: Review of concept of probability, Random Variables, Continuous and discrete distribution function, moments and moments generating functions, Binomial, Poisson, Negative Binomial, Geometric and Hyper-geometric Distributions, Uniform, Normal, Exponential, Gamma and Beta distributions. Point and Interval estimation, Testing of Hypothesis (ttest and chi square test), Analysis of variance and Introduction of Design of experiments.

Suggested Reading

- Numerical Methods for Scientific and Engineering Computation (6th edition) by Jain, Iyengar & Jain, New Age International publishers.
- 4. Probability & Statistics for Engineers & Scientists (9th edition) by R.E.Walpole, R,H,Myers&K.Ye.

Name of The	Advanced Strength of						
Course	Materials	Materials					
Course Code	MCDM5001	MCDM5001					
Prerequisite							
Corequisite							
Antirequisite							
		L	Т	Р	С		
		3	0	0	3		

Course Objectives:

- 1. To introduce the students to the behavior of structural and mechanical systems subjected to various types of loading.
- 2. To evaluate the resulting stresses, strains and deflections as well as failure criteria of these systems.

Course Outcomes

CO1	Develop a physical understanding of how mechanical and structural systems respond to a wide variety of loading (K3)		
CO2	Analyze and compute the stresses and deflection in symmetrical and asymmetrical bending for various sections		

r					
	and evaluate failure criteria of a variety of				
	mechanical and structural systems (K4)				
000	2				
CO3	Analyze and compute the stresses in				
	curved flexural members, closed and open				
	geometrical shapes (K4)				
~ ~ ·					
CO4	Develop an understanding of torsion of				
	non-circular shafts of different cross-				
	sections (K3)				
CO5	Calculate the stresses due to rotation in				
	elements of circular geometry with				
	different thicknesses and at different				
	speeds (K3)				
CO6	Apply finite element method for solving				
	boundary value problems in computational				
	solid mechanics.(K5)				

Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
20	30	50	100

Course Content:

Unit-1 Introduction
7 hours
Elasticity: Stress-strain relations and general
equations of elasticity in Cartesian polar and
spherical co-ordinates, differential equations of
equilibrium – Compatibility – boundary
conditions - representation of 3- dimensional
stress of a tensor - Generalized Hook's law
St.Venant's principle -plane strain - plane stress
– Airy's stress function.
Unit-2
8 hours
Shear centre and Unsymmetrical bending:
Location of shear centre for various sections -
shear flow. Stresses and deflection in beams
subjected to unsymmetrical loading, kern of a
section.
Unit-3
9 hours
Curved flexural members : Circumferential and
radial stresses - deflections curved beam with
restrained ends - closed ring subjected to
concentrated load and uniform load - chain
links and crane hooks.

Unit-4 9 hours

Torsion of non-circular shafts: Torsion of rectangular cross sections – St.Venant's theory – Elastic membrane analogy – Prandtl's stress function – Torsional stresses in hollow thin– walled tubes.

Unit-5 7 hours

Stresses due to Rotation: Radial and tangential stresses in solid disc and ring of uniform thickness and varying thickness – allowable speeds.

Unit VI:

constitutive equations (linear and nonlinear models, isotropic and anisotropic); elastic energy and work; balance equations (static and dynamic); solving elastic initial and boundary value problems numerically; the finite element method, Introduction to composite material, smart material,fracture mechanics.

Suggested Reading

- 9. 1. Boreshi and Sidebottom (1952), Advanced Mechanics of Materials, John Wiley International Edition.
- 2. Kamal kumar and R C Ghai (1990), Advanced Mechanics of Materials, Khanna publishers. ISBN- 978-8-174-09281-6.
- 3. Den Hartong (1952), Advanced strength of Materials, Mc Graw – Hill Book Co. New York.
- 4. Timoshenko and Goodier, Theory of Elasticity, Tata McGraw – Hill publishing company Limited. ISBN- 978-0-070-70122-9.
- S. Robert D Cooki, Warren C. Young (1952), Advanced Mechanics of Material, Mac Millian publishing Co. ISBN- 978-0-133-96961-0.
- 14. 6. L S Srinath (1990), Advanced Mechanics of Solids, Tata McGraw – Hill publishing Company Limited, ISBN- 978-0-070-13988-6.

Name of The	Advanced Materials and
Course	Processing
Course Code	MCDM5002

Prerequisite				
Corequisite				
Antirequisite				
	L	Т	Р	С
	3	0	0	3

Course Objectives:

1. To impart the knowledge on mechanical behavior of materials.

2. To acquire knowledge in various class of materials and their applications.

3. To import knowledge on various surface

modification techniques

Course Outcomes

CO1	Analyse the mechanical behaviour of metallic systems and its importance (K4)
CO2	Develop an understanding of engineering alloys and their applications (K3)
CO3	Evaluate the various methods of surface modification of materials (K5)
CO4	apply the knowledge to classify the properties and applications of metallic and non-metallic materials, and learn the selection of them (K3)
CO5	Categorize the modern materials and alloys, and analyse their behaviour and applications (K4)
CO6	Know the research scope of manufacturing technology and understand the new trends in Laser Materials Processing K5)

Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
20	30	50	100

Course Content:

Unit-1 Review of Mechanical Behaviour of		
Materials		
12 hours		
Plastic deformation in poly phase alloys -		
Strengthening mechanisms - Griffith's theory of		
failure modes -Brittle and ductile fractures -		
Damping properties of materials - fracture		
toughness - Initiation and propagation of fatigue		

cracks - Creep mechanisms - Hydrogen embitterment of metals, Selection of materials for various applications.

Unit-2 Engineering Alloys

6 hours

Cast iron , steels , alloy steels and stainless steels – an overview of phases and microstructure, types, specifications applications, heat treatment, effect of alloying elements, Aluminum, Magnesium and Ti wrought and cast alloys used in engineering applications –Types, specifications, applications, heat treatment

Unit-3 Surface Modifications of Materials 6 hours

Mechanical surface treatment and coating - Case hardening and hard facing - thermal spraying – vapour deposition-ion implantation - Diffusion coating - Electroplating and Electrolysis -Conversion coating - Ceramic and organic coatings – Diamond coating

Unit-4 Nonmetallic Materials 6 hours Composite materials, ceramics, plastics -Introduction, an overview of processing, their

characteristic features, types and applications.

Unit-5 Modern Materials and Alloys 9 hours

Super alloys- Refractory metals - Shape memory alloys- Dual phase steels, Micro alloyed, High strength low alloy steel, Transformation induced plasticity (TRIP) steel, Maraging steel –SMART materials, Metallic glass – Quasi crystal and Nano crystalline materials., metal foams.

Unit VI:

To study of research framework and industrial needs modernization of conventional machines and its scope in manufacturing sector.

Suggested Reading

- Callister W.D, (2006) Material Science and Engineering- An introduction, Wiley – Eastern. ISBN- 978-0-471736967.
- 2. Raghavan, V, (2003) Physical Metallurgy, Prentice Hall of India. ISBN- 978-8-120-33012-2.

- Thomas H. Courtney, (2000), Mechanical Behavior of Materials, McGraw Hill. ISBN-978-0-073-22824-2.
- 7. 2. Flinn R. A. and Trojan P. K., (1999), Engineering Materials and their Applications, Jaico. ISBN-978-0-395-18916-0.

Name of The Course	Advanced Manufacturing Technology				
Course Code	MCDM5003	3			
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

The course is aimed at understanding of the following

1. To provide a through coverage of traditional and non-traditional machining processes.

2. To develop and understanding of various

fundamental mechanics of machining processes.

3. To provide awareness of high speed machining,

micro-machining and nano-fabrication techniques. 4. To introduce the semi conductor, IC chips and micro actuator fabrication techniques.

Course Outcomes

0.01			
CO1	Develop and understanding of metal		
	cutting & analyze the properties of tools,		
	workpieces and cutting fluids (K3)		
CO2	Analyze and categorize the special		
	machining processes (K4)		
CO3	Investigate the high speed machining		
	processes and their applications (K4)		
CO4	Correlate the non-traditional machining		
	processes, their mechanism of metal		
	removal and their applications (K4)		
CO5	Evaluate various micro-machining		
	processes and their applications in diverse		
	fields (K6)		
CO6	Analyze the principles of Locating and		
	Clamping devices.(K5)		

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
20	30	50	100

Course Content:

Unit-1 Theory of Metal Cutting
8 hours
Mechanism of metal cutting – Orthogonal and
Oblique cutting, derivation of equations for
forces and shear angles etc., various shear angle
theories. Tool materials - Tool life and tool
wear – Temperature in metal cutting – Cutting
fluids and surface roughness.
Unit-2 Special Machining
8 hours
Deep hole drilling – Gun drills – Gun boring –
Trepanning – Honing – Lapping – Super finishing
- AFM - MAF - Burnishing - Broaching - Hard
machining – Hot machining.
Unit-3 High Speed Machining
8 hours
The high performance machining of components
– Application of HSM – Tools for HSM - Design
of tools for HSM – High speed and high
performance grinding – Ultra precision
machining.
Unit-4 Non-traditional Machining
8 hours
USM, WJM, AWJM, EDM, ECM, LBM, EBM,
Plasma machining and Hybrid machining
processes – Mechanism of metal removal,
characteristic features and applications
Unit-5 Micro Machining
8 hours
Importance of micro machining, various micro
machining processes, application of micro
machining in semi-conductor IC technology,
micro actuator and micro sensors - CVD, PVD
and Ion Implantation.
Unit VI: Locating and Clamping devices
Jigs-Locating and Clamping devices-
principles-elements-mechanical-pneumatic
and hydraulicactuation-types of Jigs-general

consideration in Jig design-jig bushing, types-

methods	of construction. Fixtures-types of
fixtures-	fixture for machine tools -lathe,
milling, t	ooring, broaching, grinding

Suggested Reading

1. Boothroyd G., and Knight W.A. (1989), Fundamentals of Metal Machining and Machine Tools, Marcel Dekker. ISBN- 978-1-574-44659-3.

2. SeropeKalpakjian and Steven R.Schmid (2001), Manufacturing Engineering and Technology, Pearson Education. ISBN- 978-8-177-58170-6.

3. Battacharya, "Theory of Metal Cutting", NCB Agency, 1984.

4. Benedict G. (1987), Non Traditional Manufacturing Processes, Marcel Dekker, ISBN-978-0-824-77352-6.

5. Mishra.P.K. (1997), Non-conventional Machining, Narosa publishing house, ISBN- 978-8-173-19192-3.

6. Bert T. Erdel (2003), High Speed Machining, Society of Manufacturing Engineers. ISBN- 978-0-872-63649-1.

7. Madou, M.J. (1997), Fundamentals of Micro fabrication, CRC press. ISBN- 978-0-849-30826-0.

8. Rai-Choudhury P. (1997), Handbook of Microlithography, Micromachining, and Micro fabrication, Vol.1 and Vol.2, Editor: IEEE Materials and Devices Series 12, London, ISBN- 978-0-819-42378-8.

Name of The Course	Product Des Cycle Manag	0		Life	
Course Code	MCDM5004	-			
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

To make the student to be familiar with

- 1. The new product management process.
- 2. Product lifecycle management stages.
- 3. The DFx concepts from the conception to recovery or disposal.

4. Applying analytic methods for all stages of product planning, development, launch, and control.

CO1	Illustrate the product development processes and their different stages(K3)
CO2	Analyze the first stage of the product development cycle using various models(K4)
CO3	Appraise and design in detail the product and its prototyping(K4)
CO4	Analyze the producibility and reliability of a product(K4)
CO5	Evaluate the issues in supply chain management, ergonomics, safety and failure mode analysis(K5)
CO6	Analyze recent developments in Life Cycle Assessment

Continuous Assessment Pattern

Internal	Mid Term	End	Total
Assessment	Exam	Term	Marks
(IA)	(MTE)	Exam	
		(ETE)	
20	30	50	100

Course Content:

Unit-1 Introduction
10 hours
Product development – Trends affecting
product development - Best practices for
product development – Product development
process and organizations – Collaborative
product development – concurrent engineering
– risk management - Stages of Product
development.
Unit-2 Product Development Life cycle – I
8 hours
Early design – Requirement Definition and Conceptual design - Trade-off Analysis – Optimization using cost and utility metrics – Trade-off analysis models and parameters- design to cost – Design to Life cycle cost – Design for warranties. Unit-3 Product Development Life cycle – II 8 hours
Detailed design – Analysis and modeling – Best
practices for detailed design – Design analyses –
Prototypes in detailed design - Test and

Evaluation – Design review, prototyping – simulation and testing – Manufacturing – Strategies – planning and methodologies

Unit-4 Producibility and Reliability 7 hours

Producibility – strategies in design for manufacturing – requirements for optimizing design and manufacturing decisions – Simplification – commonality and preferred methods – Modularity and scalability – part reduction – functional analysis and value engineering – Reliability – Strategies and practices – Testability – Design for test and inspection.

Unit-5 Product Development Life cycle – III 5 hours

Supply chain – Logistics, packaging, supply chain and the environment – ISO 14000/210 – Design for people – Ergonomics, Repairability, maintainability, safety and product liability – Task analysis and failure mode analysis.

Unit 6- Recent developments in Life cycle Assessment- 2 hours

Life cycle assessment of sustainable manufacturing systems

Suggested Reading

- John W. Priest and Jose M. Sanchez (2001), Product development and design for manufacturing- A collaborative approach to produciability and reliability, Marcel Dekker
- Stephen C. Armstrong (2001), Engineering and product development management – the holistic approach, Cambridge university press, ISBN-978-0-521-83253-3.
- 8. Thomas A. Sabomone, (1995), What every engineer should know about concurrent engineering, Marcel

Dekker Publications, ISBN- 978-0-824-79578-8.

9. Karl T. Ulrich, Ateven D. Eppinger (2003), Product Design and Development, Tata McGraw-Hill, ISBN- 978-0-070-58513-3.

Name of The Course	Advanced Co Design	omp	uter	Aid	ed
Course Code	MCDM5005				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

Reference Book (s)

1. Foley & van dam (1982), Fundamental of Interactive computer graphics, Addison Wesley longman publishing co, ISBN- 978-1-852-33818-3

2. David Rogers (2001), Procedural elements of Computer graphics, TMH, ISBN- 978-0-070-53529-9

3. Rogers and Adams (2002), Mathematical elements of Computer Graphics, TMH,ISBN-978-0-070-53529-9

4. Hearn & baker (2011), Computer Graphics, Pearson,ISBN- 978-8-177-58765-4

Course	objeeu vest				
1. To in	troduce the CAD concepts both				
theoreti	cally and application wise.	Unit-1 Introduction			
2. To pi	rovide students the necessary foundation to	8 hours			
advance	e understanding of both design and	Hardware and software requirement of CAD;			
manufa	cturing	Video display devices- Refresh cathode ray tubes,			
3. To er	nable the students to model geometry of	Raster-scan displays, Random-scan displays,			
objects	using curves and surfaces, so that the	Color CRT Monitors; Input devices- keyboard,			
models	can be used further for downstream	joy-stick, mouse, scanner; Hard copy devices- dot			
applicat	tions.	matrix, inkjet, laser printers.			
		Unit-2			
Course	Outcomes	Geometric Transformation - Basic			
CO1	Analyze the hardware and software requirement of				
CO1	Develop an analytical ability to represent transform				
002	using CAD	Transformation-Introduction, translation,			
CO3	Interpolate or fit curves through given points, and c				
005	using CAD method in two and three dimensions	Unit-3			
CO4					
C04	Develop programs to employ the mathematical tech	interfestion geonic fric from the and transformation-			
005	transformations	generalized rotation, generalized reflection; 3 D			
CO6	Develop programs to employ the mathematical tech				
000	Develop programs to employ the mathematical teer	projection, oblique projection, perspective			
Text Bo		projection.			
		Unit-4			
	Newman & Sprawl (1978), Principles of	Introduction to curves, parametric continuity			
inte	eractive Computer Graphics, Mcgraw hill	condition, geometric continuity condition, spline			
coll	lege, ISBN-978-0-074-63293-2	representation, spline specification, geometric			
		and algebra forms, cubic spline interpolation			
2.	Michel E. Mortenson (2006), Geometric	method, natural cubic spline, Bezier curves, B-			
mo	deling, Industrial press, ISBN-978-0-201-	spline curves, curve animation.			
848	340-3	Unit-5			
		Quadric surfaces- sphere, ellipsoid, torus; Super			
3. V	Van Dam, Hughes Jhon, James Foley (2002),	quadrics- superellipse, superellipsoid; Bezier			
Cor	mputer graphics, principles and practices	surfaces; B-spline surfaces.			
	urson, ISBN- 978-0-201-84840-3	Unit-6			
1 00					

Finite Element Analysis and is applications in simulation

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Finite Eleme	nt M	letho	ods	
Course Code	MCDM5006				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		2	1	0	3

Course Objectives:

- 4. To enable the students understand the mathematical and physical principles underlying the Finite Element Method (FEM) as applied to solid mechanics and thermal analysis
- 5. To understand the characteristics of various finite elements.
- 6. To develop finite element equations for simple and complex domains.

Course Outcomes

A = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =
Apply the knowledge of mathematics and
engineering to solve problems in structural
and thermal engineering by approximate
and numerical methods.
Design a new component or improve the
existing components using FEA.
Solve the problems in solid mechanics and
heat transfer using FEM.
Analyze the vibration problems and
transient state problems dynamically.
Analyze transient heat transfer problems
using FEM
Use commercial FEA packages like
ANSYS and modern CAD/CAE tools for
solving real life problems
-

Text Book (s)

- Seshu, P.(2010), *Textbook of Finite Element* Analysis, Prentice-Hall of India Pvt. Ltd. ISBN- 978-8-120-32315-5.
- Tirupathi R. Chandrapatla, Ashok D. Belegundu, Introduction to Finite Element in Engineering Prentice-Hall of India Private limited, New Delhi – 110 001. ISBN-<u>978-0-130-61591-6</u>.

Reference Book (s)

- 5. Bathe, K.J, (1996), *Finite Element Procedures*, Prentice-Hall of India Pvt. Ltd., third Edition. ISBN- 978-0-979-00490-2.
- Zienkiewicz O.C. (1989), *The Finite Element Method*, McGraw-Hill. ISBN- 978-0-070-84072-0.
- Reddy J.N. (1993), *The Finite Element* Method, McGraw-Hill, Third Edition, 1993. ISBN- 978-0-072-46685-0.
- 8. C.S. Krishnamoorthy, (1994), *Finite Element Analysis Theory and Programming*, Tata McGraw-Hill, ISBN- 978-0-074-62210-0.

5. Robert cook, R.D. et. Al., (2004), *Concepts and Applications of Finite Element*

Analysis, John Wiley &sons, ISBN- 978-0-471- 35605-9.

Unit-1 Fundamental Concepts

6 hours

Matrix Algebra, Gaussian Elimination, Definition of Tensors and indicial notations, Plane strain-Plane stress hypothesis. Physical problems, Mathematical models, and Finite Element Solutions, Finite Element Analysis as Integral part of Computer Aided Design, Stresses and Equilibrium; Boundary Conditions; Strain-Displacement Relations; Stress –strain relations, Temperature Effects.

Unit-2 Finite Element Formulation from Governing Differential Equations and on Stationary of a Functional

6 hours

Weighted Residual Method for Single Continuous Trail Function and General Weighted Residual Statement, Weak Variational Form of Weighted Residual statement, Comparison of Differential Equation, Weighted Residual and Weak forms, Piece-wise Continuous Trail function solution of weak form, One dimensional bar finite element and one dimensional heat transfer element, Functional of a differential equation forms, Rayleigh-Ritz Method, Piece-wise Continuous

trail functions, Finite Element Method and
Meaning of Finite Element Equations.
Unit-3 One-Dimensional Finite Element Analysis
9
hours
General form for Total Potential for 1-D, Generic
form of finite element equations, Linear Bar Finite
element, Quadratic Bar Element- Shape function
and Element matrices, Beam element- selection of
nodal d.o.f., Determination of Shape functions and
Element matrices, 1-D Heat transfer problem.
Unit-4 Unit IV: Two-Dimensional Finite Element
Analysis
9 hours
Approximation of Geometry and Field variable:
Three-noded triangular element, Four-noded
rectangular element, six-noded triangular
elements, natural coordinates and coordinate
transformation, 2-D elements for structural
mechanics, Numerical integration, Incorporation
of Boundary Conditions and Solution.
Unit-5 Dynamic Analysis using Finite Elements
6 hours
Introduction to vibration problems, Consistent and
Lumped mass matrices, Form of finite element
equations for vibration problems, Eigenvalue
Problems, Transient vibration analysis and
unsteady heat transfer problem.
Unit 6- Experimental FEM 3 hours
Circulation mode to the second ANOXO

Simulation methods using ANSYS.

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The	Computer In		ated		
Course	Manufacturi	ng			
Course Code	MCDM5007				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

- 1. To acquaint the students with the CIM concepts and role of CAD in manufacturing
- 2. To enable the students learn the analysis tools for manufacturing
- 3. To help students know the control structures for manufacturing systems in the CAM area

Course Outcomes

CO1	Analyse the components of CIM system
	and their functions in relation to
	manufacturing. (K4)
CO2	Apply the concept of group technology to
	group the parts manufactured by
	organisation to take advantages of it. (K3)
CO3	Evaluate the production planning and
	material requirement planning for whole
	organisation. (K5)
CO4	Prepare process plan using various tools
	and techniques of computer aided process
	planning. (K6)
CO5	Apply the knowledge of CIM in
	automating the material handling
	systems.(K3)
CO6	Analyze the latest trends in CIM to the
	application of factories of future (K4)

Text Book (s) and Reference Book (s)

1. U.Rembold (1993), *Computer Integrated Manufacturing and Engineering*, Addison Wesley Publishers, 1993 edition. ISBN- 978-0-201-56541-6.

2. RajanSuri(1998), *Quick Responsive Manufacturing*, Productivity Press, ISBN- 978-1-563-27201-1.

Unit-1 Fundamentals of Automation in		
Manufacturing Systems and Functions		
and		
Components of CIM System		
9 hours		
Manufacturing Systems: Concept Objectives,		
Types and Trends; Concepts of Mechanization,		
Automation and Integration. Functions and		
Components of CIM System: Concept of		
CAD/CAM and CIMS; Software Technology for		
CIM System:Business Database System: File		
processing, Data Processing and Database Design,		
File Organization and Relational Analysis;		
Decision Support System, Personal/Distributed		
Computing and Local Area Network.		

Unit-2 Group Technology and Cellular
Manufacturing
7 hours
Concept of Group Technology and its
Application, classification and Coding
Techniques; Clustering Techniques and Cellular
Manufacturing.
Unit-3 Planning and Scheduling Functions in CIM
System
9 hours
Aggregate Production Planning (APP), Master
Production Schedule (MPS), Material
Requirement Planning (MRP), Capacity
Requirement Planning (CRP), Manufacturing
Resource Planning (MRPII), Just-In-time
Production Systems and Concept of Enterprise
Resource Planning (ERP).
Unit-4 Computer-Aided Process Planning
7 hours
Approaches – Variant and Generative, Feature
Classification and Recognition; Process
Classifications and Selections, Machines and Tool
Selection, Setting Process Parameters, Process Sheet Documentation.
Unit-5 Automated Material Handling Systems and
Advanced Manufacturing Systems and
5 hours
Industrial Robots, Conveyors, AGVs, Automatic
Storage and Retrieval Systems; Lean
Manufacturing Systems, Agile Manufacturing
Systems, Reconfigurable Manufacturing Systems,
Holonic Manufacturing Systems and Agent-Based
Manufacturing Systems.
Unit-6 3 hrs
CIM and factories of future

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Advanced Vibration Engineering
Course Code	MCDM5008

Prerequi site	-		
Corequis	-		
ite			
Antirequ	-		
isite			
		 1	

Course Objectives:

- 1. To introduce classical Vibration theories, relating to discrete and continuous systems with applications.
- 2. To teach various numerical techniques including FE for analysis of complex structures and modal testing for natural frequencies and mode shapes.
- 3. To introduce special cases of non-linearity and random phenomena in vibrating systems including their stability.

Course Outcomes

CO1	Demonstrate an understanding of the concepts of Mechanical vibrations starting from single, two, Multi degree freedom systems. (K3)
CO2	Analyse free and forced vibrations in
	single, two, Multi degree freedom systems. (K4)
CO3	Examine advanced concepts like Continuous, Non-linear and Random Vibrations. (K3)
CO4	Apply FEM to formulate the mechanical vibrations (K3)
CO5	Analyse systems utilizing different modes of vibration (K4)
CO6	Analysereliability based system for random vibration (K4)

Text Book (s) and Reference Book (s)

1. W. T. Thomson (1999), *Theory of Vibration*, Kluwer Academic Pub; 4th edition. ISBN- 978-0-748-74380-3.

2. TSE, Morse and Hinkel (1991), *Mechanical Vibrations*, Chapman and Hall, ISBN-978-0-205-05940-9.

3. Den Hartong (1986), Mechanical Vibrations, McGraw Hill. ISBN- 978-0-486-64785-2.

4. V.P.Singh (1988), *Mechanical Vibrations*, Dhanput Rai & Co. ISBN-978-0-000-27184-7.

5. S.Timoshenko, D.H.Young (1991), Vibrations Problems in Engineering, D.VanHostrand Company, Inc, Afiliated East-West Press Pvt. Ltd. ISBN-978-0-471-63228-3.

Unit-1 Single and Two degrees of freedom
system
8 hours
Introduction to free, forced, transient and damped
vibrations, terminology and applications. Discrete
systems - single degree and two degree systems,
response to free forced motions (steady state and
transient) applications to vibration isolation and
absorption.
Unit-2 Several degrees of freedom
6 hours
Multi degree systems – techniques of analysis
such as Dunkerley, Rayleigh, Holzer, Matrix
iteration, Transfer matrices and modal analysis.
Unit-3 Continuous and Torsional Vibration
9 hours
Continuous systems Free and forced vibrations of
bars for longitudinal, shear, torsional and
transverse vibrations, Beams with attached masses
rotor dynamics and FEM applications.
Unit-4 Non-linear Vibrations
9 hours
Non-linear vibrations, jump phenomenon and
stability. Applications including self excited and
parameter excited vibrations.
Unit-5 Random Vibrations
8 hours
Random vibrations - stationary and non-
stationary, ergodic systems, response of single
degree systems to random excitation.
Unit 6
Reliability based system analysis

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The	Computer Aided Process
Course	Planning
Course Code	MCDM5009
Prerequisite	
Corequisite	
Antirequisite	
	L T P C

0	0	2	1
v	v	-	

Course Objectives:

To provide the student with an understanding of the importance of process planning role in manufacturing and the application of Computer Aided Process Planning tool in the present manufacturing scenario

Course Outcomes

CO1	Distinguish the concepts of process
	planning applicable to manufacturing in
	consideration with production planning,
	concurrent engineering and group
	technology (K4)
CO2	Execute part design representations for
	process planning using different coding
	systems(K3)
CO3	Apply process engineering skills for
	different process panning methods (K3)
CO4	Implement logical design concepts for
	computer aided process planning systems
	(K3)
CO5	Interpret totally integrated process
	planning systems and generate reports
	(K3)
CO6	Apply feature recognition from CAD file
	in CAPP (K4)

Text Book (s) and Reference Book (s)

1. Gideon Halevi and Roland D.Weill (1995), *Principle of Process Planning-A logical Approach*, Chapman & Hall, ISBN-978-0-412-54360-9.

2. Tien-Chien-Chang, Richard A.Wysk (1985), *An Introduction to automated process planning systems*, Prentice Hall. ISBN- 978-0-134-78140-2.

3. Chang.T.C. (1985), *An Expert Process Planning System*, Prentice Hall.

4. Nanua Singh (1996), *Systems Approach to Computer Integrated Design and Manufacturing*, John Wiley & Sons, ISBN-978-0-471-58517-6.

5. P. N. Rao, N. K. Tewari, T. K. Kundra (2000), *Computer Aided Manufacturing*, Tata McGraw Hill Publishing Co. ISBN- 978-0-074-60205-8.

Unit- 6 hou	1 Introd	uctio	n			
		of	Process	Planning	in	the
Manu	ıfacturin	g cy	ycle- Pro	cess plant	ning	and
produ	iction]	olann	ing –Pro	cess planr	ning	and

Concurrent Engineering, CAPP, Group
Technology.
Unit-2 Part Design Representation
7 hours
Design Drafting – Dimensioning – Conventional
Tolerencing - Geometric Tolerencing- CAD -
input/output devices - Topology - Geometric
transformation – Perspective transformation –
Data Structure– Geometric modeling for process
planning –GT coding – The OPITZ system – The
MICLASS System.
· ·
Unit-3 Process Engineering and Process Planning
6 hours
Experience based planning – Decision table and
Decision trees – Process capability analysis –
Process planning – Variant process planning –
Generative approach – Forward and backward
planning, Input format, A1
Unit-4 Computer Aided Process Planning
Systems
6 hours
Logical Design of process planning -
Implementation considerations- Manufacturing
system components, Production Volume, No. of
production families- CAM-I, CAPP, MIPLAN,
APPAS, AUTOPLAN and PRO, CPPP.
Unit-5 An Integrated Process Planning Systems
5 hours
Totally integrated process planning systems – An
Overview – Modulus structure – Data structure –
Operation – Report Generation, Expert process
planning.
Unit 6- Advances in CAPP
Feature extraction from CAD, Genetic
algorithsms in CAPP

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Advanced Computer Aided Design and Manufacturing Lab				
Course Code	MCDM6001				
Prerequisite					
Corequisite					
Antirequisite					
_		L	Т	Р	С
		0	0	2	1

Course Objectives:

To provide students the necessary foundation for advanced understanding of both design and manufacturing problems in a systematic manner.

Course Outcomes

CO1	Gain practical experience in handling 2D drafting and 3D modeling software systems
CO2	Examine and handle design problems in a systematic manner
CO3	Develop the use of the concepts of G and M codes and manual part programming.
CO4	Apply the knowledge of CNC machines for machining simulation
CO5	Apply the knowledge of specialized softwares for modelling as well as analysis of machining operations
CO6	Student will able to understand the new trends of automobile bio fuels, it's engine modification and research on new generation of biofuels

Reference Book (s)

1. CAD/CAM Lab Manual (Prepared by Staff)

2. Bathe K.J, (2007), Finite Element Procedures, Prentice-Hall of India Pvt. Ltd., third edition ISBN: 978-0-979-00490-2

3. ZienkiewiczO.C.(1979), The Finite Element Method, McGraw-Hill, ISBN-978-0-750-66431-8

4. ANSYS Help manual

5. Hyper mesh Help manual

6. CATIA Help manual

7. YoremKoren (1983), Computer Integrated Manufacturing Systems, McGraw Hill, ISBN- 978-0-891-16874-4

8. Ranky, Paul G.(1986), Computer Integrated Manufacturing, Prentice Hall International, ISBN-978-0-131-65655-0

9. R.W. Yeomamas, A. Choudry and P.J.W. Ten Hagen (1985.), Design rules for a CIM system, North Holland Amsterdam, ISBN- 978-0-444-87812-0

10. Pro-E Help manual

11. Master CAM Help manual

List of experiments

- 3-D part modeling, assembling and drafting by using Pro-E/CATIA/Solid Works/ Unigraphics etc. of following components :
 - i. Piston Head
 - iii. Crank shaft
 - ii. Connecting rod iv. Controller arm
- By using Ansys/Nisa/Hyper-mesh/Solid-Works/CATIA software, perform the analysis of the above components by using 1D, 2D and 3D elements for:
 - i. Static analysis iii. Harmonic analysis
 - ii. Modal analysis iv. Buckling analysis
- Write the part program for the following and simulate it by using Master-CAM/ Solid CAM/ Cimatron/ EXSL Win/ CNC Pro build/ CMAS simulator:
 - i. Turning operation
 - a. Centre turning c. Threading
 - b. Taper turning
 - ii. Milling operation
 - a. Edge cutting Boring Pocketing

c.

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
70	-	30	100

Name of The Course	Dissertation-1
Course Code	MCDM9998
Prerequisite	

Corequisite				
Antirequisite				
	L	Т	Р	С
	-	-	-	5

Course Objectives:

1. To make literature survey for various recently emerging technologies.

2. To select any topic of interest and to review the related literature in detail.

3. To compare and analysis the various topologies for the selected topic of interest.

4. To give more emphasize to the one of best topology and to obtain a network model for it.

5. To analysis the simulation results of the particular topology obtained from various simulation tools.

6. To get realize the hardware implementation of the above topology for which we obtained simulations.

Course Outcomes

CO1	Analyze the relevance of knowledge obtained from literature for the research
	work taken up
CO2	Evaluate the recently advanced
	techniques.
CO3	Extract detailed information about the
	topic of interest
CO4	Plan an innovative work in the area of
	interest
CO5	Apply the different simulation tools
	applicable to the area of research

Text Book (s)

Depending upon the area of interest student may choose any text book of relevant field.

Reference Book (s)

As per the chosen area of research.

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
50	Nil	50	100

Name of The Course	Dissertation-II
-----------------------	-----------------

Course Code	MCDM9999				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		-	-	-	15

Course Objectives:

1. To make literature survey for various recently emerging technologies.

2. To select any topic of interest and to review the related literature in detail.

3. To compare and analysis the various topologies for the selected topic of interest.

4. To give more emphasize to the one of best topology and to obtain a network model for it.

5. To analysis the simulation results of the particular topology obtained from various simulation tools.

6. To get realize the hardware implementation of the above topology for which we obtained simulations.

Course Outcomes

CO1	Design a project relevant to the field of
	study
CO2	Demonstrate expertise in the selected area
	of research
CO3	Conduct an innovative work in the
	selected area of research
CO4	Apply the different simulation tools
	applicable to the area of research
CO5	Demonstrate a thorough understanding of
	the chosen topic of dissertation

Text Book (s)

Depending upon the area of interest student may choose any text book of relevant field.

Reference Book (s)

As per the chosen area of research.

Continuous	Assessment	Pattern
------------	------------	---------

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
50	Nil	50	100

Name of The Course	Tool Engineering				
Course Code	MCDM5011				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

The main objective of the course is to give students the basic concepts of tool engineering. The student is guided to use these concepts in the design of jigs, fixtures and various types of dies used in production industry through assigned projects and factory visits.

Course Outcomes

CO1	Compare the meterials used to make					
COI	Compare the materials used to make					
	different types of tooling components					
	including tool steels, low carbon steels,					
	cast iron, aluminum, plastics and cutting					
	tool materials.					
CO2	Integrate CAD techniques into the design					
	of production tooling to help understand					
	the advantages and disadvantages for					
	productive tool design.					
CO3	Develop an understanding of the factors					
	involved in the design of special					
	production inspection gages, cutting tools					
	for production machines and the selection					
	of tool geometries for metal cutting					
	methods					
CO4	Develop an understanding of the principles					
001	involved in the design of jigs and fixtures					
	concentrating on locating methods,					
	clamping and use of drill bushings.					
	Standard jig and fixture designs will be					
	reviewed.					
CO5	Develop an understanding of the principles					
005						
	used in the design and plastic injection					
	mold tooling and Composite tooling. To					
	include cavity layout, sprue and runner					
	design, gate design, venting, cooling, and					
	selection of tooling components					
CO6	Analyze the tool system in micro, nano					
	machining technology (K4)					

Text Book (s)

1.James A Szumera, The Metal stamping Process, Industrial Press Incorp. Donaldson of al 'Tool Engineering', Tata Mc-Graw Hill.

Reference Book (s)

- 1. Pollack, H.W. Tool Design, Reston Publishing Company, Inc.
- 2. Kempster, M.H.A. Principles of Jig and Tool Design, English University Press Ltd.
- John G. Nee, Fundamentals of Tool Design Author - Society of Manufacturing Engineers
- 4. Handbook of Fixture Design (SME)", Society of Manufacturing Engineers,McGraw-Hill.
- 5. D.F. Eary and E.A. Red, "Techniques of Pressworking Sheet Metal", PrenticeHall.
- 6. "Tool Engineers Handbook, ASTME", McGraw-Hill.
- 7. R.G.W.Pye, Injection Mould Design, Long man scientific and technical ltd.

Unit-1

10 hours

Introduction and basic tool design principles Broad Classification of Tools-Cutting tools, Dies, Holding and measuring tools, Tool manufacturing and Introduction to Computer aided die design applications.

Unit-2 8 hours

Design of Cutting Tools: Single Point and multipint cutting tools; Single Point Cutting Tools: Classification, Nomenclature, geometry, design of single point tools for lathes, shapers, planers etc. Chip breakers and their design; Multipoint Cutting Tools: Classification and specification, nomenclature, Design of drills, milling cutters, broaches, taps etc.; Design of Form Tools: Flat and circular form tools, their design and application.

Unit-3 6 hours

Design of Dies for Bulk metal Deformation-Wire Drawing, Extrusion, Forging and Rolling; Design of Dies for Sheet metal: Blanking and Piercing, Bending and Deep-drawing; Design of Dies used for Casting and Moulding.

Unit-4

5 hours

Design of Jigs, Fixtures and Gauges: Classification of Jigs and Fixtures, Fundamental Principles of design of Jigs and Fixtures, Location and Clamping in Jigs and fixtures, Simple design for drilling Jigs, Milling fixtures etc. Indexing Jigs and fixtures.

Unit-5

8 hours

Design of Moulds: Mould making, General Mould Constructions, Intermediate Mould Design-Splits, Side core and side cavities, Moulding Internal undercuts, Runner less moulds, Aspects of practical mould design.

Unit 6-3 hours

Advances in micro, nano machining technology

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Advanced Computer Aided Manufacturing				
Course Code	MCDM5012	0			
Prerequisite					
Corequisite					
Antirequisite					
		L	Τ	Р	С
		3	0	0	3

Course Objectives:

Introduction to the use of computers in several extended areas of product design and manufacturing, including product data management in a sustaining engineering environment

CO1	Demonstrate a basic understanding of machining fundamentals such as tooling systems, and work-holding systems for CNC milling and turning equipment
CO2	Analyze the constructional features of
	CNC machines
CO3	Apply the numerical controlled (NC)
	programming strategies for
	manufacturing
CO4	Generate NC code using G-codes to
	machine parts to specifications.
CO5	Interpret the design of robot technology
	and their application in manufacturing
CO6	Apply the role of CAM in industry 4.0

Text Book (s)

1. Mikell P. Groover (1997), CAD-CAM, Prentice hall of India, ISBN- 978-8-177-58416-5

2. B.S. Pabla (2003), CNC machines, New age international publishers, ISBN- 978-8-122-40669-6

3. Koren Y (1986), Computer Control of Manufacturing systems, McGraw Hill,ISBN-978-0-070-60743-9.

4. Petruzella F D (1989), Programmable Logic Controllers, McGraw Hill,ISBN- 978-0-071-06738-6.

Reference Book (s)

1. John W. (1980) Programmable Controllers -Principles and Applications - Merrill Publ.Co, New York, ISBN- 978-0-130-41672-8

2. <u>Alan Overby</u> (2010), CNC machining Handbook, McGraw Hill Professional, ISBN-978-0-071-62302-5

3. Barry Leatham – Jones (1986), Introductions to Computer Numerical Control, Pitman, London - John willey&Sons,ISBN- 978-0-132-79497-8

4. Reinbold U, Blume C and Dilmann R (1985), Computer Integrated Mfg. Technology & Systems, Marcel Dekker, ISBN- 978-0-824-77403-5.

Unit-1 Introduction Introduction to CAM and automation 9 hours

Current trends in Manufacturing Engineering, the product cycle and CAD/CAM, automation and control, basic elements of an automated system, power to accomplish the automatic process, program of instructions, control system, advanced automation functions, safety monitoring, maintenance and repair diagnostics, error detection and recovery, levels of automation. Unit-2 Fundamentals of CNC machines 12 hours Basic Components of CNC system - Part programming, Machine control unit, Machine tool - Historical developments and their role in control of machine tools, Classification of NC / CNC systems - Based on type of Control $(PTP\C\L)$, method of programming, Direct numerical control (DNC), adaptive control machining system Unit-3 Constructional Features of CNC Machines 8 hours Design considerations of CNC machines for improving machining accuracy-Structural members-Slide ways - Sides linear bearings - Ball screws - Spindle drives and feed drives - work holding devices and tool holding devices -Automatic Tool changers. Feedback devices -Principles of Operation-Machining Centres -Tooling for CNC machines. Unit-4 Programming for CNC Machines 9 hours Numerical control codes - Standards - Manual Programming - Canned cycles and subroutines -Computer Assisted Programming, CAD / CAM approach to NC part programming - APT language, machining from 3D models Unit-5 Robot Technology 6 hours Introduction, robot physical configurations, Basic robot motion, technical features, programming the robot and languages, end effectors, robotic sensors, robot applications. Unit 6- CAM and Industry 4.0 2d Cutting, 3D roughing, CAM and Industry 4.0

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Performance Modelling and Analysis of Manufacturing Systems					
Course Code	MCDM5013					
Prerequisite	rerequisite					
Corequisite						
Antirequisite						
		L	Т	Р	С	
	3 0 0 3				3	

Course Objectives:

- 1. To learn the fundamental aspects of automated manufacturing system, simulation and computer control system.
- 2. To develop the ability to formulate and analyze problems which are encountered in manufacturing systems.

Course Outcomes

CO1	Value the importance of modelling and
	simulation in manufacturing
CO2	Apply the understanding of the behaviour of dynamic and stochastic queuing systems and discrete-event simulation concepts in modelling.
CO3	Model automated manufacturing system "intelligently" and come up with high fidelity models.
CO4	Develop the queuing models and Petri net models for solving manufacturing problems.
CO5	Produce codes for modelling and simulation based on the understanding of the course
CO6	Analyze manufacturing system with Industry 4.0

Text Book (s) and Reference Book (s)

- N. Viswanadham and Y. Narahari (1994), Performance Modeling of Automated Manufacturing Systems, Prentice hall of India, New Delhi, ISBN-
- K.S. Trivedi (1982), Probability and Statics with Reliability, Queuing and Computer Science Applications, Prentice Hall, New Jersey, ISBN- 978-1-600-21518-6
- 3. S.C. Gupta and V.K. Kapoor (1988), Fundamentals Mathematical Statics", 3 rd Edition, Sultonchand and sons, New Delhi, ISBN- 978-8-170-14791-6

Unit-1 Manufacturing systems and simulation				
12 hours				
Modeling automated manufacturing systems- role				
of performance modeling-performance				
measures- performance modeling tools-				
Simulation models- Analytical models.				
Automated				
manufacturing systems- introduction product				
cycle-manufacturing automation-				
Economics of				

scale and scope. Manufacturing system- input-
output model- plant configurations.
Performance measures- manufacturing lead time-
work in process-machine utilization
throughput- capacity- flexibility- performability-
quality. Computer control system- control
system architecture- factory communications-
local area networks- factory networks-
open
system interconnection model- net work to
network interconnections- manufacturing
automation protocol- data base management
system.
Unit-2 Manufacturing process
9 hours
Examples of Stochastic processes- Poison
process, Discrete time Markov Chain models-
Definitions and notation- Sojourn Times in States-
Examples of DTMCs in manufacturing-
Chapman-Kolmogorov equation- Steady state
analysis. Continuous Time Markov chain models-
Definition and notation-Sojourn times in states-
Examples of CTMCs in manufacturing- Equation
for CTMC evolution-Markov model of a transfer
line-Birth and Death Process in manufacturing
Unit-3 Queuing models
6 hours
Notation for queues- Examples of queues in
manufacturing-Performance measures-the
M/M/m queue- queues with general distributions-
queues with breakdowns- Analysis of a flexible
machining center.
Unit-4 Queuing networks
7 hours
Examples of queuing network models in
manufacturing- Little's Law in queuing
networks- Open queuing network- closed
queuing networks- Product form queuing
networks.
Unit-5 PETRI NETS
6 hours
Classical Petri nets- Stochastic Petri net-
Generalized stochastic Petri nets modeling of
KANBAN system- Manufacturing models.
Unit 6 -
Embedded communication, embedded computing
, Preparing manufacturing systems for Industry
4.0
~

Internal	Mid	End	Total	
Assessment	Term	Term	Marks	
(IA)	Test	Test		
	(MTE)	(ETE)		

Name of The Course	Design for Manufacturing				
Course Code	MCDM5014				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		2	1	0	3

Course Objectives:

The course is aimed at developing students to acquire skills to analyze product design and be able to design products that are easier to manufacture, assemble, service and more friendlier to environment, etc.

Course Outcomes

CO1	Apply the general design principles for manufacturability (K4)
CO2	Produce customer-oriented, manufacturing and life-cycle sensitive approach to product design and development, with product design principles and structured design methodologies (K4)
CO3	Utilize the methods and approaches for developing, implementing, and nurturing an effective DFM process within the firm (K3)
CO4	Develop robust designs using design of experiments (K4)
CO5	Modify existing designs using design principles for specific considerations (K4)
CO6	Apply the principles of DFM to design for assembly

Text Book (s)

1. Harry Peck (1983), Design for Manufacture, Pittman Publication, ISBN- 978-0-273-00008-2.

Reference Book (s)

1. Karl T. Ulrich, Ateven D. Eppinger (2003), Product Design and Development, Tata McGraw-Hill, ISBN- 978-0-070-58513-3.

- James G. Bralla (1986), Hand Book of Product Design for Manufacturing, McGraw Hill co, ISBN- 978-0-071-50178-1.
- 3. Jonathan C. Borg, Philip J. Farrugia, Kenneth P. Camilleri (1987), Knowledge based design for manufacture, Kogan Page Ltd, ISBN- 978-1-402-07732-6.
- 4. Boothroyd, G., (1994), Product Design for Manufacture and Assembly, Marcel Decker, ISBN- 978-1-420-08927-1.
- 5. Bralla, J.G., (1999), Design for Manufacturability Handbook, McGraw-Hill.ISBN- 978-0-070-07139-1.

Unit-1 Introduction

8 hours
General design principles for manufacturability –
strength and mechanical factors, evaluation
method, Process capability - Feature tolerances-
Geometric tolerances-Assembly limits- Datum
features- Tolerance stacks
Unit-2 Factors influencing form Design
10 hours
Working principle, Material, Manufacture, Design
– Possible solutions – Materials choice – Influence
of materials on form design – form design of
welded members, forgings and castings.
Unit-3 Component Design – Machining Consider
9 hours
Design features to facilitate machining – drills -
milling cutters – keyways – Doweling procedures,
counter sunk screws – Reduction of machined area
– simplification by separation – simplification by
amalgamation – Design for Machinability –
Design for accessibility – Design for assembly.
Unit-4 Robust Design and Taguchi Method
8 hours
Robust design - Design of experiments - Robust
design process- Orthogonal arrays: Two level
orthogonal arrays, Three level orthogonal arrays,
Combined inner and outer arrays.
Unit-5 Redesign for Manufacture and case
studies
9 hours
Design for economy, Identification of
uneconomical design - Modifying the design -
Computer Applications for DFMA
Unit 6- DFA
Case study- Design for manufacturing and
Assembly

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Quality Management				
Course Code	MCDM5015				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		2	1	0	3

Course Objectives:

To provide student with the basic understanding of the approaches and techniques to assess and improve process and or product quality and reliability.

Course Outcomes

CO1	Demonstrate a good knowledge of quality
	management principles
CO2	Correlate the Total Quality Management
	principles and models
CO3	Apply the problem solving tools and
	techniques to solve real life problems
CO4	Apply the Quality Management
	techniques
CO5	Propose quality standards for
	manufacturing
CO6	Apply the principles of modern
	technological use in quality control

Text Book (s)

1. DaleH. Beterfield et al (2001), Total Quality Management, Pearson Education Asia, ISBN- 978-8-131-73227-4.

Reference Book (s)

1. John Bank J.E. (1993), *Total Quality Management*, Prentice Hall, India, ISBN- 978-0-132-84902-9.

- 2. Samuel K.Ho (2002), *TQM- AN Integrated approach*, Kogan Page India Pvt. Ltd, ISBN-978-0-749-41561-7.
- Jill A.Swift, Joel E. Ross and Vincent K. Omachonn (1998) Principles of Total Quality, St.Lucie Press, US, 1998. ISBN-978-1-574-44094-2.

Unit-1 Introduction to Quality Management
6 hours
Business scene in India and world over – quality
imperatives – Efficiency & Effectiveness –
Definition of Quality – Vision, Mission statement
– formulation – Quality policy – Customer
orientation – Quality culture and mind set –
Qulaity philosophies of Deming, Crosby, Miller
Comparison.
Unit-2 Total Quality Management
6 hours
TQM principles – Customer satisfaction model –
Customer retention model – QFD – Customer
satisfaction measurement – Evolution of TQM –
System & Human components – TQM models –
Deming wheel principle – Top management
commitment.
Unit-3 Problem Solving Tools
12 hours
Old & QC Tools – Seven new management tools
- Problem solving techniques - Case studies -
 Problem solving techniques – Case studies – Problems – Continuous improvement tools –
Problems – Continuous improvement tools –
Problems – Continuous improvement tools – Benchmarking, Quality circle.
Problems – Continuous improvement tools – Benchmarking, Quality circle. Unit-4 QM Techniques
Problems – Continuous improvement tools – Benchmarking, Quality circle. Unit-4 QM Techniques 10 hours FMEA, BPR, JIT, KANBAN – Reliability studies
Problems – Continuous improvement tools – Benchmarking, Quality circle. Unit-4 QM Techniques 10 hours
Problems – Continuous improvement tools – Benchmarking, Quality circle. Unit-4 QM Techniques 10 hours FMEA, BPR, JIT, KANBAN – Reliability studies – Failure rate analysis – Reliability models.
Problems – Continuous improvement tools – Benchmarking, Quality circle. Unit-4 QM Techniques 10 hours FMEA, BPR, JIT, KANBAN – Reliability studies – Failure rate analysis – Reliability models. Unit-5 Quality System Implementation
Problems – Continuous improvement tools – Benchmarking, Quality circle. Unit-4 QM Techniques 10 hours FMEA, BPR, JIT, KANBAN – Reliability studies – Failure rate analysis – Reliability models. Unit-5 Quality System Implementation 5
Problems – Continuous improvement tools – Benchmarking, Quality circle. Unit-4 QM Techniques 10 hours FMEA, BPR, JIT, KANBAN – Reliability studies – Failure rate analysis – Reliability models. Unit-5 Quality System Implementation 5 hours
Problems – Continuous improvement tools – Benchmarking, Quality circle. Unit-4 QM Techniques 10 hours FMEA, BPR, JIT, KANBAN – Reliability studies – Failure rate analysis – Reliability models. Unit-5 Quality System Implementation 5 hours ISO Certification – ISO 9000 – ISO 14000 –
Problems – Continuous improvement tools – Benchmarking, Quality circle. Unit-4 QM Techniques 10 hours FMEA, BPR, JIT, KANBAN – Reliability studies – Failure rate analysis – Reliability models. Unit-5 Quality System Implementation 5 hours ISO Certification – ISO 9000 – ISO 14000 – Principles & Methodologies, Six Sigma, Taguchi,
Problems – Continuous improvement tools – Benchmarking, Quality circle. Unit-4 QM Techniques 10 hours FMEA, BPR, JIT, KANBAN – Reliability studies – Failure rate analysis – Reliability models. Unit-5 Quality System Implementation 5 hours ISO Certification – ISO 9000 – ISO 14000 – Principles & Methodologies, Six Sigma, Taguchi, 5S concepts, Legal aspects, TQM road map,
Problems – Continuous improvement tools – Benchmarking, Quality circle. Unit-4 QM Techniques 10 hours FMEA, BPR, JIT, KANBAN – Reliability studies – Failure rate analysis – Reliability models. Unit-5 Quality System Implementation 5 hours ISO Certification – ISO 9000 – ISO 14000 – Principles & Methodologies, Six Sigma, Taguchi, 5S concepts, Legal aspects, TQM road map, Strategies – case studies.

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Reliability Engineering				
Course Code	MCDM5016				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С

3 0 0 3

Course Objectives:

To equip the students to analyze reliability data.
 To introduce the concepts of reliability and

useful life availability of products.

3. To impart knowledge on maintainability and availability analyses of products.

Course Outcomes

CO1	Value the concept of reliability of
	products
CO2	Analyse the reliability through various
	data analysis techniques
CO3	Predict the reliability using different
	approaches and models
CO4	Test the reliability and monitor its growth
	for a given system
CO5	Assess the risk using analysis techniques
CO6	Create a reliability plan

Text Book (s) and Reference Book (s)

1. Mohammad Modarres, Mark Kaminskiy, VasiliyKrivtsov (1999), Reliability Engineering and Risk Analysis: A Practical Guide, CRC Press, ISBN-978-1-420-04705-9

 John Davidson (1988), The Reliability of Mechanical system, Institution of Mechanical Engineers, London, ISBN-978-0-852-98881-7.
 Charles E. Ebeling(2004), Introduction to Reliability in Design, McGraw Hill, London, 978-0-070-42138-7.

Unit-1 Reliability Concept <u>6 hours</u> Reliability function - failure rate - Mean Time Between Failures (MTBF) - Mean Time to Failure (MTTF) - a priori and a posteriori concept mortality curve - useful life availability maintainability - system effectiveness. Unit-2 Reliability Data Analysis <u>6 hours</u> Time-to-failure distributions - Exponential, normal, Gamma, Weibull, ranking of data probability plotting techniques - Hazard plotting. Unit-3 Reliability Prediction Models

hours

Series and parallel systems - RBD approach -Standby systems - m/n configuration - Application of Baye's theorem - cut and tie set method -Markov analysis - FTA - Limitations.

Unit-4 Reliability Management

10 hours

Reliability testing - Reliability growth monitoring - Non parametric methods - Reliability and life cycle costs - Reliability allocation - Replacement model.

Unit-5 Risk Assessment

5 hours

Definition and measurement of risk - risk analysis techniques - risk reduction resources - industrial safety and risk assessment.

Unit -6

Reliability of emerging technology, Building a reliability plan.

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Metrology and Non Destructive Testing				
Course Code	MCDM501	7			
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

- 1. Impart the knowledge of quality assurance and inspection techniques.
- 2. Familiarize with the various inspection and measurement techniques like contact and non-contact measurement by adapting Computer Aided Inspection.
- 3. Impart the knowledge of working principles and calibration of various Systems.

CO1	Apply the knowledge in CMM and Image
	Processing

CO2	Apply the concept of Laser Metrology and
	Computer Integrated Quality Assurance
CO3	Apply the knowledge of magnetic particle
	testing
CO4	Apply the knowledge of ultrasonic and
	Acoustic emission techniques.
CO5	Apply the knowledge to solve real life
	problems
CO6	Apply the principles of automated NDT
	techniques

Text Book (s)

 JAIN.R.K. (1997), Engineering Metrology, Khanna Publishers, ISBN- 978-8-174-09153-6.

Reference Book (s)

- 1. Barry Hull and Vernon John (1988), Non Destructive Testing, Mac Millan, ISBN-978-0-333-35788-0.
- 2. American Society for Metals, Metals Hand Book, Vol. II, 1976.
- 3. Progress in Acoustic Emission, Proceedings of 10th International Acoustic Emission Symposium, Japanese society for NDI, 1990.

Unit-1 Measuring Machines
6 hours
Tool Makers's microscope – Co-ordinate
measuring machines - Universal measuring
machine- Laser viewers for production profile
checks - Image shearing microscope - Use of
computers - Machine vision technology-
Microprocessors in metrology.
Unit-2 Statistical Quality Control
6 hours
Data presentation – Statistical measures and tools
- Process capability - Confidence and tolerance
limits - Control charts for variables and for
fraction defectives - Theory of probability -
Sampling -ABC standard - Reliability and life
testing.
Unit-3 Liquid Penetrant and Magnetic Particle
Tests 12
hours
Characteristics of liquid penetrants - different
washable systems - Developers - applications-
Methods of production of magnetic fields-

Principles of operation of magnetic particle test-Applications- Advantages and Limitations. Unit-4 Radiography

10 hours

Sources of ray X-ray production-properties of d and x rays – film characteristics – exposure charts – contrasts – operational characteristics of x ray equipment – applications.

Unit-5 Ultrasonic and Acoustic Emission Techniques

5 hours

Production of ultrasonic waves – different types of waves - general characteristics of waves – pulse echo method – A, B, C scans – Principles of acoustic emission techniques – Advantages and limitations - Instrumentation – Applications. Unit 6

Transducers and probes, thickness gauges, case study

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Design and Analysis of Experiments				
Course Code	MCDM5018				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	P	С
		3	0	0	3

Course Objectives:

The objective of this course is to introduce experimental design techniques and familiarize with all of the best design techniques and study the objectives, similarities, differences, advantages, and disadvantages of each.

CO1	Develop Full and Fraction Factorial
	Experiment Design.
CO2	
	Hypothesis testing.
CO3	Apply Loss function approach to Quality
	Control.
CO4	Setup and analyse Robust Design.

CO5	Apply orthogonal arrays for design and
	conduct of experiments
CO6	Apply Response surface method to study
	the output of the experiment.

Text Book (s) and Reference Book (s)

- 1. Philip J. Rose, "Taguchi Techniques for Quality Engineering", Prentice Hall, 1989.
- 2. Montgomery, D.C., "Design and Analysis of Experiments", John Wiley and Sons, 1997.
- 3. NicoloBelavendram, "Quality by Design: Taguchi Techniques for Industrial Experimentation", Prentice Hall, 1995.

Unit-1 Introduction

8 hours

Basic principle of DOEs, Guide lines for Designing Experiments, Terminology, ANOVA, Computation of sum of squares and Basics of quality by design

Unit-2 Single Factor Experiments

6 hours

Randomized complete block design, Latin square design, Graeco-Latin square design, Incomplete block design and Tests on means.

Unit-3 Factorial Design

9 hours

Two-Factor factorial design, General factorial design, 2k Factorial design, 3k Factorial design, confounding, Fractional replication and Factors with mixed levels.

Unit-4 Robust Design Process

6 hours

Comparison of classical and Taguchi's approach, variability due to noise factors, principle or robustization, classification of quality characteristics and parameters, objective functions in robust design, S/N ratios.

Unit-5 Orthogonal Experiments

8 hours

Selection and application of orthogonal arrays for design, Conduct of experiments, collection of data and analysis of simple experiments, Modifying orthogonal arrays, Inner and outer OA experiments, Optimization using S/N ratios, attribute data analysis, a critique of robust design. Unit-6 Introduction; Response surface design: Designs

for fitting first order model, Central Composite Design, Box-Behnken Designs; Analysis of data from RSM designs: First order design, second order design

Continuous Assessment Pattern

Internal	Mid	End	Total Marks
Assessment	Term	Term	
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Research Methodology				
Course Code	MCDM5019				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		3	0	0	3

Course Objectives:

The course is aimed at understanding of the following

- 1. To gain familiarity with the presents status of the research.
- 2. To measure the frequency of occurrences of various parameters/indicators.
- 3. To reveal the trend and tendencies in the research, i.e., to assess the development or extension potential of the research.
- 4. To test the significance and validity and reliability of the results.

Course Outcomes

CO1	Analyze a research problem using the
	literature survey with systematic methods
	(K4)
CO2	Apply data collection and sampling
	techniques for a given research problem
	(K3)
CO3	Analyse the collected and sampled data
	applying statistical methods (K4)
CO4	Apply non-traditional algorithms for
	optimization of a proposed solution (K3)
CO5	Create valid research reports (K6)
CO6	Student will able to apply the linear
	regression models in practice

Text Book (s) and Reference Book (s)

- 1. <u>Beri</u>, (2005), Statistics for Management 3E. Tata McGraw-Hill Education, ISBN- 978-0-070-08323-3.
- Donald R. Cooper, Pamela S. Schindler (2011.), Business Research Methods, 8/e, Tata McGraw-Hill Co. Ltd., ISBN- 978-0-071-28922-1.
- U.K. Srivastava, G.V. Shenoy and S.C. Sharma(2005), Quantitative Techniques for managerial decisions, New Age International, Mumbai, ISBN- 978-8-122-40189-9.
- 4. William G. Zikmund (2006), Business Research Methods, Thomson,ISBN- 978-1-285-40118-8
- 5. D.M.Pestonjee, (2005) (Ed.) Second Handbook of Psychological and Social Instruments, Concept Publishing, New Delhi,ISBN-978-8-170-22652-9.

Unit-1 Introduction
8 hours
Definition of Research, Qualities of Researcher, Components of Research Problem, Various Steps in Scientific Research, Types of Research; Hypotheses Research Purposes - Research Design - Survey Research - Case Study Research.
Unit-2 Data Collection
8 hours
Sources of Data: Primary Data, Secondary Data; Procedure Questionnaire - Sampling Merits and Demerits - Experiments - Kinds - Procedure; Control Observation - Merits - Demerits - Kinds - Procedure - Sampling Errors - Type-I Error - Type-II Error.
Unit-3 Statistical Analysis
10 hours
Introduction to Statistics - Probability Theories - Conditional Probability, Poisson Distribution, Binomial Distribution and Properties of Normal Distributions, Point and Interval Estimates of Means and Proportions; Hypothesis Tests, One Sample Test - Two Sample Tests / Chi-Square Test, Association of Attributes - t-Test - Standard deviation - Co-efficient of variations - Index Number, Time series and forecasting: Components of time series, Analysis of time series, Measurement of trend, Measurement of seasonal variations.
Unit-4 Genetic Algorithms
8 hours
Working principle-Genetic operators-Simulated Annealing - Neural network based optimization- Optimization of fuzzy systems-fuzzy set theory-

computational procedure

Unit-5 Research Reports
6 hours
Structure and Components of Research Report,
Types of Report, Good Research Report, Pictures
and Graphs, Introduction to SPSS.
UNIT 6
Regression analysis Purposes, Types of
Regression, Simple Regression, multiple
Regression, Building Regression Model,
regression analysis in excel, Interpretation of
regression result.

Continuous Assessment Pattern

Internal	Mid	End	Total
Assessment	Term	Term	Marks
(IA)	Test	Test	
	(MTE)	(ETE)	
20	30	50	100

Name of The Course	Optimization Methods				
Course Code	MCDM5020				
Prerequisite					
Corequisite					
Antirequisite					
		L	Т	Р	С
		2	1	0	3

Course Objectives:

- 3. To understand the role of optimization in Engineering design and its importance
- 4. To introduce the different optimization algorithm in linear programming and non-linear programming

CO1	Formulate the design problem in			
	mathematical form which can be solved			
	by suitable optimization algorithm (K3)			
CO2	Apply optimization techniques, linear as			
	well as non-linear, for solving constrained			
	as well as unconstrained design			
	problems.(K4)			
CO3	Employ the advanced non-linear			
	optimization techniques to solve complex			
	optimization problems (K3)			
CO4	Compare the efficiency of different			
	algorithms and employ the most efficient			
	for a given set of problems (K2)			
CO5	Apply the techniques to produce optimum			
	designs in engineering (K4)			

CO6 Conduct experiments based on desig of experiments

Text Book (s)

9. Rao, S.S. (1978), *Optimization - Theory and Applications*, Wiley Eastern, New Delhi, ISBN- 978-0-852-26756-1.

Reference Book (s)

- Wilde, D.J. (1964), *Optimization seeking Methods*, Prentice – Hall, Englewood Cliffs, New Jersey.
- Johnson, Ray C., Optimum Design of Mechanical Elements, 2nd Ed., John Wiley & Sons, Ic., New York, 1980. ISBN-978-0-471-03894-8.
- Kalyanmoy Deb (1996), Optimization for Engineering Design-Algorithms and Examples, Prentice-Hall of India, 1996. ISBN- 978-8120309432

Unit-1 Linear Optimization

7 hours

Optimization problem statement - classification single variable - multivariable unconstrained equality constrained and inequality constrained. Simplex methods - dual simplex method bounded variable technique for linear programming problems. Integer Programming & Dynamic Programming; Gomary's cutting plane method - branch and bound method - Bellman's principle of optimality-inventory, capital budgeting, reliability problems and simplex problem.

Unit-2 Unconstrained Non-linear Optimization

6 hours

Unimodal function – Region elimination methods: Unrestricted, Dichotomous, Fibonacci, Golden Section, Bi-section - Direct search methods: Random, Univariate, Pattern search methods – Descent methods: Steepest descent, Conjugate gradient and Variable metric.

Unit-3 Constrained Non-linear Optimization

9 hours

Characteristics of a constrained optimization problem - Direct methods: Cutting plane method, methods of feasible directions – Indirect methods: Interior and exterior penalty function methods – Geometric programming – Solution from differential calculus point of view – Solution from arithmetic-geometric inequality point of view. Unit-4 Advanced Non-linear Optimization

8 hours

Genetic Algorithms -Working principle-Genetic operators-Numerical problem -Simulated Annealing - Numerical problem - Neural network based optimization-Optimization of fuzzy systems-fuzzy set theory computational procedure. Unit-5 Optimization Design of Machine Elements

12 hours

Unit-6

Optimization of process parameters by Taguchi method, response surface methodology, AI and neural netwoks